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Abstract

Ordering Flexibility, Delay Information Heterogeneity, and Time-of-Service Preferences

in Operations Management

Yang Li

Doctor of Philosophy

Graduate Department of Rotman School of Management

University of Toronto

2016

This thesis studies three problems in operations management related to the reorder flex-

ibility in supply chain management and operation strategies in service industry.

In Chapter 2, I investigate the value of reorder flexibility under price competition.

Although the supply chain literature shows that reorder flexibility increases profits even

under quality competition, I show that price competition, arguably a more appropriate

price formation model in the presence of reorder flexibility, may yield opposite results: (i)

Reorder flexibility may increase competing firms’ initial orders. (ii) Reorder flexibility

hurts profits except if it reduces initial orders and in addition, demand variability is mod-

erate, reordering is sufficiently inexpensive, and products are sufficiently differentiated.

(iii) Firms can avoid the downside of reorder flexibility only in some cases where it hurts

profits. In others, firms are trapped in a prisoner’s dilemma, whereby reorder flexibility

is the dominant strategy even though it hurts their profits.

In Chapter 3, I study how the growing prevalence of real-time delay information

affects service system performances, i.e., throughput and social welfare. I consider an

M/M/1 system with two streams of customers, one informed about real-time delay and

one uninformed. I show that the impacts of growing information prevalence on system

performance measures are determined by the equilibrium joining behavior of uninformed

customers. Moreover, throughput and social welfare can be unimodal in the fraction of

informed customers. In other words, some amount of information heterogeneity in the

population can lead to strictly more efficient outcomes than information homogeneity,
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under which the queue length is either visible or invisible to all customers.

In the last chapter, I consider the capacity allocation problem when customer arrivals

are endogenously determined by system intertemporal delays. I show that the socially

optimal solution is in general not aligned with customer self-interested incentives, since

customers do not take into account the provider’s capacity cost when choosing their time-

of-service (TOS). Therefore, in order to retain the incentive compatibility of the socially

optimal solution, the provider has to charge for TOS such that price differences across

time periods equal the corresponding capacity cost differences.
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Chapter 1

Introduction

In this thesis, I study three questions in operations management. Specifically, the second

chapter discusses the reorder flexibility in supply chain management and the last two

chapters focus on operation strategies in service industry.

In Chapter 2, I examine the value of reorder flexibility under price competition. The

supply chain literature shows that reorder flexibility increases profits under competition,

assuming fixed prices or quantity competition. I show that price competition, arguably a

more appropriate price formation model in the presence of reorder flexibility, may yield

opposite results. I consider a three-stage model of duopoly firms that sell differentiated

products with stochastic demand. Firms make reorder-flexibility decisions and then place

initial orders, before observing demand. After observing demand, firms set prices and,

if they have the option, may reorder at a higher cost. I show that the expected profit

functions are not unimodal and provide extensive equilibrium results. These appear to

be the first for stochastic finite-horizon price-inventory competition with more than one

order opportunity. I show: (i) Unilateral reorder flexibility is not an equilibrium. (ii)

Reorder flexibility may increase initial orders. (iii) Reorder flexibility hurts profits except

if it reduces initial orders and in addition, demand variability is moderate, reordering is

sufficiently inexpensive, and products are sufficiently differentiated. (iv) Firms can avoid

the downside of reorder flexibility only in some cases where it hurts profits. In others,

firms are trapped in a prisoner’s dilemma, whereby reorder flexibility is the dominant

strategy even though it hurts their profits.

In Chapter 3, I study how the growing prevalence of real-time delay information has an

impact on a service system. I consider a single-server queueing system where customers

arrive according to a Poisson process and service takes an exponential time. There are

two streams of customers, one informed about real-time delay and one uninformed. I

characterize the equilibrium behavior of customers who may balk in such a system and

1
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investigate how a larger fraction of informed customers affects the system performance

measures, i.e., throughput and social welfare. I show that the impacts of growing infor-

mation prevalence on system performance measures are determined by the equilibrium

joining behavior of uninformed customers. Perhaps surprisingly, we find that throughput

and social welfare can be unimodal in the fraction of informed customers. In other words,

some amount of information heterogeneity in the population can lead to strictly more

efficient outcomes, in terms of the system throughput or social welfare, than information

homogeneity. For example, under a very mild condition, throughput of a system with

offered load being 1 will always suffer if there are more than 58% of informed customers

in the population. Moreover, it is shown that for an overloaded system with offered load

sufficiently higher than 1, social welfare always reaches its maximum when some fraction

of customers are uninformed of the congestion in real time.

In the last chapter, I consider capacity allocation under endogenous arrivals of strate-

gic customers with heterogeneous time-of-service (TOS) preferences. Literature on the

design and control of congestion-prone service systems usually assumes that the customer

arrival processes are exogenous, and in particular, independent of the time-varying wait

time conditions. However, customers may account for system performance in choosing

their arrival times. That is, they may adjust their visit times in exchange of shorter

delays. In this paper, I propose a discrete time choice model that captures how rational

customers with heterogeneous TOS preferences and delay sensitivities determine their

arrival times. I show the existence of a customer choice equilibrium. Taking into account

this equilibrium, I then consider the optimal intertemporal capacity allocation decision.

I characterize the properties of the socially optimal solution and discuss its incentive

compatibility with customer self-interested TOS choices. I find that with a limited to-

tal capacity, the optimal capacity allocation alone is sufficient to prevent the system

efficiency loss from customer decentralized decisions. However, when the capacity costs

play a role, the provider has to impose a pricing scheme to align customer incentives.

Specifically, if the capacity costs are time-varying, the provider has to charge, in order to

retain the incentive compatibility, for TOS such that price differences across time periods

equal the corresponding capacity cost differences.
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Chapter 2

The Peril of Reorder Flexibility

under Price Competition

2.1 Introduction

Fashion apparel retailers face the problem of matching supply with demand over a short

and unpredictable selling season. This is particularly challenging if they must make pro-

curement decisions well before the season. However, the accuracy of demand forecasts

increases dramatically at the inception of the season, when fashion trends are better

understood. Retailers can exploit this improved demand information through price flex-

ibility and reorder flexibility.

Price flexibility allows retailers to adapt prices to market conditions, contingent on

whether demand for an item is high or low. Such flexibility also supports downside

volume flexibility, whereby a retailer charges more than the liquidation price, to sell only

a fraction of its inventory and hold back the rest. This strategy may boost profits under

low demand. Some retailers are unwilling to slash prices even if this means throwing

away unsold garments (Dwyer 2010).

However, price flexibility only helps manage demand. To adapt their supply and

stay on top of fashion trends, reorder flexibility, a core component of quick response

capabilities, is critical for fashion retailers. Their supply chains have become nimbler

than ever. As a result of reduced lead times, they can order not only well in advance, but

also place and receive additional (typically more expensive) orders right before or at the

inception of the season, once better demand information is available. This upside volume

flexibility also offers downside protection, as it allows firms to reduce initial orders and

still maintain the ability to satisfy higher demand. For example, in the well-known Sport

3
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Obermeyer case (Fisher and Raman 1996), the ability to place a second order reduces

overstocking and increases product availability. With their lightning-fast supply chains,

fast fashion retailers such as Zara are pushing reorder flexibility to an extreme.

Virtually the entire academic and trade literature focuses on these benefits of price

and/or reorder flexibility for better matching supply with demand. However, this per-

spective ignores the following downside that we study in this paper: Reorder flexibility

may erode profits by fostering more aggressive price competition. This effect is consis-

tent with estimates of management consultants A.T. Kearney, that nowadays apparel

retailers sell between 40 and 45 percent of inventory at a promotional price, up from 15

to 20 percent a decade ago (D’Innocenzio 2012). This paper cautions that, given the

prevalence of price flexibility in the industry, concerns over intensified price competition

are likely to grow as reorder flexibility proliferates. We address two main questions:

(1) Why and under what conditions does reorder flexibility hurt or increase profits un-

der price competition? (2) Which reorder flexibility configuration do retailers choose in

equilibrium?

We study these questions in the context of a three-stage duopoly model with stochas-

tic demand. Each firm sells a single differentiated product. Demand is a linear function

of prices with an ex ante unknown intercept. Both firms simultaneously make reorder-

flexibility decisions and then simultaneously place initial orders, before demand uncer-

tainty resolves. In the last stage, after observing demand, firms simultaneously set prices

and – if they have the option – reorder more units. The reorder unit cost exceeds the

unit cost on initial orders, as shorter lead times increase sourcing and distribution costs.

Leftover inventory is disposed with zero salvage value.

2.1.1 Overview of Main Results

This paper contributes novel managerial insights and technical results that derive from its

focus on price competition under both downside and upside volume flexibility. Manageri-

ally, we identify under what conditions reorder flexibility hurts profits, and the resulting

equilibrium flexibility choices. Technically, to our knowledge this paper provides the first

equilibrium results for a stochastic finite-horizon problem under price competition with

more than one order opportunity. In contrast, prior flexibility studies assume quantity

competition. This distinction is important. Managerially, our results are in sharp contrast

to those under quantity competition, and price competition may be a more appropriate

model of price formation when firms have volume flexibility. Technically, our analysis

overcomes challenges that arise only under price competition.
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1. Reorder flexibility can hurt profits under price competition. The ordering and

pricing equilibria under the symmetric reorder flexibility configurations yield the following

results (see Sections 2.3-2.5).

(a) Orders. The key effect of price competition is that it leads to more aggressive

ordering. This weakens or even reverses the downside protection of reorder flexibility.

Specifically, only if reordering is sufficiently cheap, relative to early procurement, do

firms with reorder flexibility order less initially than inflexible firms. Otherwise, however,

flexible firms order more initially than inflexible firms. Furthermore, even in cases where

flexible firms order less initially, if demand turns out high, they reorder so much that

they end up with more inventory than inflexible firms.

(b) Expected profits. Reorder flexibility hurts profits whenever it yields larger initial

inventories and therefore lower prices and higher procurement costs. However, reorder

flexibility may also hurt profits if it leads to smaller initial orders. Two countervailing

effects are at work under low versus high demand. Reorder flexibility hurts profits except

if the gains from downside protection under low demand dominate the losses from inten-

sified competition under high demand, which holds under three conditions: (i) products

are sufficiently differentiated; (ii) the demand variability is neither too small nor too

large; and (iii) reordering is sufficiently cheap.

2. Reorder flexibility configurations in equilibrium. We show that in the flexibility-

selection stage that precedes the procurement-pricing decisions, unilateral reorder flexi-

bility is not an equilibrium. Furthermore, bilateral inflexibility is the Pareto-dominant

symmetric equilibrium only in some of the cases where reorder flexibility hurts profits.

In these cases the firms can avoid the downside of reorder flexibility by committing to

inflexibility. However, in other cases they are trapped in a prisoner’s dilemma, whereby

it is the dominant strategy for firms to select reorder flexibility even though it hurts their

profits (see Section 2.6).

These results point to the strategic importance of product differentiation and efficient

reorder operations as complementary capabilities, not only to reap the benefits of reorder

flexibility, but also to avoid its downside.

3. Price competition versus quantity competition. Our results under price competition

are in stark contrast to prior findings on the effects of volume flexibility under quantity

(Cournot) competition.

(a) Upside volume flexibility can hurt profits only under price competition. Lin and

Parlaktürk (2012) consider a reorder option for duopoly retailers that sell a homoge-

neous product under quantity competition. In their analysis competition between “fast”

retailers that can reorder after demand is realized yields (weakly) smaller initial orders
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and larger expected profits, compared to competition between “slow” retailers without

a reorder option. These results are the opposite of our findings that the “reorder” game

may yield larger initial orders and lower expected profits than the “no reorder” game,

and moreover, that a reorder option can only benefit firms if products are sufficiently

differentiated (see Sections 2.5.2-2.5.3).

(b) Downside volume flexibility may yield lower inventories and profits under price

versus quantity competition. Anupindi and Jiang (2008) prove that competition among

homogeneous-product firms with downside volume flexibility through a hold back option

yields higher expected profits than competition among inflexible firms that sell all supply

ex post at the clearance price (Van Mieghem and Dada 1999 show this numerically).

In their model of flexible firms, equilibrium sales quantities and prices are determined

under quantity competition1. We show that compared to quantity competition, under

price competition flexible firms not only get lower profits, as expected, but they may

also make lower inventory investments, because price competition reduces their control

of downside risk through the hold back option (see Section 2.3.2).

The assumption of quantity competition is usually justified with the classic result

that single-stage quantity competition yields the same outcome as two-stage competition

where firms first choose supply quantities (capacity, production or inventory) and then

prices (Kreps and Scheinkman 1983). However, this equivalence critically hinges on the

condition that firms cannot increase their supply while or after demand is formulated

(cf. Tirole 1998, p. 217). By its very nature, volume flexibility may clearly violate

this condition, in which case price competition may be a more appropriate model of

price formation. This would certainly seem to apply to firms such as Zara that can

flexibly increase their inventories above initial levels after observing demand. Whether

quantity or price competition is more appropriate under volume flexibility depends on

factors that affect how flexibly firms can increase their supply, such as the marginal cost

and the delivery time of replenishment orders (cf. Tirole 1998, p. 224). The contrast

between the results under price versus quantity competition underscores the importance

of understanding these factors in order to better predict and improve performance under

volume flexibility.

4. Equilibrium analysis under price competition. We provide extensive results that

explicitly characterize the equilibria in terms of the demand and cost characteristics. The

analysis is challenging because under price competition, each firm’s first-stage expected

profit function is generally not unimodal in its own order. Quantity competition is much

1 They show that quantity competition has the same outcome as a two-stage production-price sub-
game, which proves the stochastic counterpart of the result of Kreps and Scheinkman (1983).
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more tractable as it does not face this challenge (see Section 2.3.1). This may explain why

our results appear to be the first for stochastic finite-horizon price competition with more

than one order. Our differentiated-products model has the dual appeal of being more

plausible and more tractable under price competition than the homogeneous-product

model that is prevalent under quantity competition.

2.1.2 Literature Review

This paper is at the intersection of two literatures. One studies stochastic price-inventory

control problems, the other considers the impact of price and/or operational flexibility

on profitability.

Numerous papers in both streams focus on monopoly settings. See Chen and Simchi-

levi (2012) for a recent survey of integrated price-inventory control models and Petruzzi

and Dada (2011) who focus on newsvendor models. Among monopoly studies of flexi-

bility, Van Mieghem and Dada (1999) study the benefits of production and price post-

ponement strategies, with limited analysis of quantity competition; Cachon and Swinney

(2009) show that quick response can be significantly more valuable to a retailer in the

presence of strategic consumers than without them; Goyal and Netessine (2011) analyze

volume and product flexibility under endogenous pricing.

The understanding of stochastic price-inventory control under competition is limited.

At one extreme of the problem space, Bernstein and Federgruen (2005) and Zhao and

Atkins (2008) study the single period problem in the classic newsvendor framework: The

selling period is so short compared to lead times that firms can order only once, before

demand is realized, and also choose prices in advance. At the other extreme, Kirman and

Sobel (1974) and Bernstein and Federgruen (2004) study periodic-review infinite-horizon

oligopolies, but under conditions that reduce them to myopic single period problems

where decisions in each period are made before demand is realized. Kirman and So-

bel (1974) obtain a partial characterization of a pure strategy Nash equilibrium with

a stationary base-stock level. Bernstein and Federgruen (2004) identify conditions for

existence of a pure strategy Nash equilibrium in which each retailer adopts a stationary

base-stock policy and list price. Our paper studies models in the intermediate domain

between the single-period and infinite-horizon extremes: The selling horizon is finite but

firms are sufficiently responsive to exploit information gained over time to make decisions

more than once. This case is gaining importance as businesses are countering shrinking

product lifecycles with faster operations and adaptive pricing. However, this appears to

be the first paper that considers price competition among firms that can order more than
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once over time. In the stochastic Bertrand-Edgeworth model (cf. Hviid 1991, Reynolds

and Wilson 2000) homogeneous-product firms order only once, before observing demand,

and set prices thereafter. In other studies (cf. Porteus et al. 2010, Liu and Zhang 2013

and references therein) firms only compete in prices whereas capacity levels are exogenous.

In the literature on flexibility under competition, a number of economics papers study

the strategic effects of flexibility in the absence of demand uncertainty, e.g., Maggi (1996),

Boccard and Wauthy (2000), Röller and Tombak (1993). A general insight from these

studies is that flexibility can be harmful under competition. However, demand uncer-

tainty is the key challenge to matching supply with demand, and the fundamental reason

for supply chain flexibility. Studies of flexibility under competition with stochastic de-

mand can be grouped into two streams. One focuses on product flexibility (Anand and

Girotra 2007, Goyal and Netessine 2007), the other, which includes this paper, on volume

flexibility (cf. Vives 1989, Van Mieghem and Dada 1999, Anupindi and Jiang 2008, Li

and Ha 2008, Caro and Mart́ınez-de-Albéniz 2010, Lin and Parlaktürk 2012). In contrast

to this paper, none of these studies consider price competition: They either assume fixed

prices or consider endogenous pricing under assumptions that lead to quantity competi-

tion.

In the product flexibility stream, Anand and Girotra (2007) consider two-product

firms that choose between early product differentiation before, or delayed differentiation

after demand uncertainty is resolved. They show that early differentiation may arise as

a dominant strategy. Goyal and Netessine (2007) consider two-product firms that choose

whether to invest in flexible or dedicated technology and identify conditions under which

flexibility benefits or harms profits. In both papers, unlike in ours, prices are determined

by quantity competition and the total supply is determined before demand uncertainty

resolves; the essence of product flexibility is that it allows firms to delay product-to-

market allocation decisions until demand is known.

The volume flexibility stream has more of a history in economics. Going back to

Stigler (1939), these papers often model the degree of flexibility on a continuum, by the

slope of the average cost curve around some minimum; cf. Vives (1989) who studies a two-

stage homogeneous-product oligopoly in which firms choose their flexibility level before

receiving (private) demand signals, and then choose production quantities. In contrast,

volume flexibility studies in the operations management literature typically consider two

discrete flexibility configurations that differ in terms of the timing of supply decisions

(capacity/production/inventory) relative to when demand is realized. The key finding

that is common to these papers is that competition with volume flexibility increases ex-

pected profits compared to competition without such flexibility: This holds for downside
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flexibility through a hold back option under quantity competition (Van Mieghem and

Dada 1999, Anupindi and Jiang 2008), and for upside flexibility through a reorder option

or reactive capacity – both under fixed prices (Li and Ha 2008, Caro and Mart́ınez-de-

Albéniz 2010) and under quantity competition (Lin and Parlaktürk 2012). As discussed

in Section 2.1.1, the conditions for the equivalence of price and quantity competition

(Kreps and Scheinkman 1983, Anupindi and Jiang 2008) may not hold in the presence of

volume flexibility. We show that the results under price competition may be the opposite

of those under quantity competition and fixed prices.

Wu and Zhang (2014) study a sourcing game where homogeneous-product firms first

choose between efficient (long lead-time, low cost) and responsive (short lead-time, high

cost) sourcing, then place orders, and finally, after demand is realized, sell their invento-

ries at the market-clearing price. Their setup bears some resemblance to ours, but there

are important differences. In terms of modeling, we study price competition, and more

importantly, we allow two orders, early and late, whereas in their model firms can order

only once, early or late. Our model may be more applicable for fashion retailers such

as Sports Obermeyer or Zara that typically order more than once. The results of the

two papers are therefore not directly comparable, and they focus on different issues. In-

deed, in their model, even without competition, either sourcing option may be preferred

depending on the cost-information tradeoff. Wu and Zhang (2014) study the effects of

competition and information on this tradeoff. In contrast, in our model a monopoly al-

ways prefers reorder flexibility, and we identify under what conditions price competition

reverses this preference.

2.2 Models, Problem Formulations, and Preliminary

Analysis

We study duopoly firms with price flexibility, each selling a single differentiated product

with price-sensitive demand. The bulk of the paper (Sections 2.2-2.5) focuses on the

analysis and comparison of two games in which the reorder option is symmetric between

firms. In the “no reorder” game, referred to as N game, firms have no reorder flexibility

but only price flexibility. In the “reorder” game, referred to as R game, firms have

price and reorder flexibility. In Section 2.6 we justify this focus on symmetric flexibility

configurations: We show that unilateral reorder flexibility is not an equilibrium in the

flexibility-selection stage that precedes the procurement-pricing decisions.
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2.2.1 Models

The N and R games share the following two-stage structure. In stage one, before observ-

ing demand, firms simultaneously choose their initial orders. The outcome of stage one

is common knowledge. Demand uncertainty is resolved before firms make their second-

stage decisions. The N and R games are identical up to this instant when demand is

observed. They differ as follows in the second-stage decisions. In the N game, firms

simultaneously choose prices but they cannot reorder. In the R game, firms simultane-

ously choose prices and reorder quantities. The initial unit procurement cost is typically

lower than the reorder unit cost. Demand and sales occur following the second-stage

decisions. Taken literally, this captures a situation where firms gain demand information

through factors other than their own early-season sales, such as weather, market news

and fashion trends. However, the model can also be viewed as a reasonable approxi-

mation of settings where sales that materialize between the first order delivery and the

second-stage decisions only make up a small fraction of initial inventory but are still of

significant value for demand forecasting. It is quite common that the forecast accuracy

for total season demand increases dramatically after observing a few days of early season

sales. The model does not specify delivery lead times; we assume they are short enough

so firms do not lose sales due to delivery delays. Without loss of generality the salvage

value of leftover inventory is zero. We ignore further holding costs that may be incurred

during the season, as they are insignificant relative to margins and overstocking costs.

We index the firms by i ∈ {1, 2} and denote their variables and functions, such as

order quantities, prices, demands, and profits, by corresponding subscripts. We write −i
to denote firm i’s rival, where −i 6= i. We model demand uncertainty in a linear demand

system, which is widely used in the literature on differentiated products (e.g., McGuire

and Staelin 1983, Singh and Vives 1984). The linear form arises as the solution of the

optimal consumption problem of a representative consumer with quadratic utility (Vives

2001, Chapter 6.1). Let pi denote firm i’s price and p = (p1, p2). Demand for firm i’s

product is given by

di(p;α) = α− pi + γp−i ≥ 0, i = 1, 2. (2.1)

The intercept α > 0 is ex ante uncertain; we call it the market size parameter. We

assume that demand is high, i.e., α = αH , or low, i.e., α = αL < αH , with equal

probability. The assumption of equally likely high- and low-demand scenarios does not

change our main qualitative insights. Uncertainty in α may be due to factors that

equally affect differentiated products in the same category, such as color in the case

of fashion items. The product substitution parameter γ ∈ [0, 1) reflects the degree of
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product differentiation and factors such as brand preferences. We assume that γ is

known, based on the notion that brand loyalty and price sensitivity are well understood.

Firm-i’s demand sensitivity to its rival’s price increases in γ. The larger γ the less

differentiated the products. For γ ≈ 1 each firm’s demand is (approximately) equally

sensitive to both prices. The demand system (2.1) does not explicitly model situations

with perfectly substitutable products (the higher-price firm gets positive demand even

as γ → 1), but as discussed in Section 2.7.1, our main insights continue to hold for a

scaled version of (2.1) that does capture perfect substitution. At last, the parsimonious

demand model in (2.1) represents the dependence of demand on price in a scaled system

as that in McGuire and Staelin (1983). It is thus invalid to directly compare the actual

prices, quantities, and profits across different values of γ in the demand system defined in

(2.1). For example, one may find that the demand model (2.1) implies that the aggregate

(industry) demand increases with γ, which contradicts with our intuition that the amount

of potential customers who are interested in either product at least does not increase as

the two products are less differentiated. In fact, this is true for our scaled model (2.1)

after mapping it back to the real quantities. We refer to Staelin (2008) for more detailed

discussions. Note that we establish all our results based on the assumption that γ is

a predetermined parameter. As a result, the parsimonious scaled demand system (2.1)

does not alter our results.

In stage one, before knowing whether the market size will be αL or αH , firm i chooses

its (initial) order xi at unit cost c ∈ [0, C], where C is the unit reorder cost that is available

in the presence of reorder flexibility. We normalize C ≡ 1 in our analysis without loss of

generality, but use the notation C in our discussion. Let x = (x1, x2) denote the initial

order vector.

2.2.2 Problem Formulations

Both for the N and the R game, our analysis focuses on pure-strategy Nash equilibria in

the second stage and on subgame-perfect Nash equilibria in symmetric order strategies

in the first stage.

No reorder game. Let πNi (p, xi;α) denote firm i’s second-stage revenue function in

the N game. It depends on both prices p, firm i’s initial inventory xi, and the realized

market size α. Given initial inventories x and market size α, firms simultaneously choose

prices in the second stage:

max
pi

πNi (p, xi;α) = pi ·min (xi, di(p;α)) , i = 1, 2, (2.2)
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where πNi (p, xi;α) is strictly concave in pi. We assume that excess demand is lost. Since

firms observe the market size realization α prior to choosing prices, they have no incentive

to generate more demand than they can satisfy. However, a firm may find it optimal not

to sell all the inventory procured in the first stage, if the market turns out to be small.

In this case, we say that the firm prices to hold back inventory. As noted above, leftover

inventory has zero salvage value. Let pN∗ (x;α) denote the second-stage equilibrium price

vector and πN∗i (x;α) = πNi
(
pN∗ (x, α) , xi;α

)
firm i’s second-stage equilibrium revenue

for the N game, as a function of the initial orders x and the market size α. Let ΠN
i (x)

denote firm i’s expected profit as a function of initial orders x. In the first stage, firms

simultaneously choose their orders by solving

max
xi≥0

ΠN
i (x) =

1

2

(
πN∗i (x;αL) + πN∗i (x;αH)

)
− cxi, i = 1, 2. (2.3)

Let xN∗ denote equilibrium orders, and the scalar xN∗ a symmetric equilibrium order

quantity.

Reorder game. Let πRi (p, xi;α) denote firm i’s second-stage profit function in the R

game. In addition to choosing prices, firms can reorder inventory at a unit cost C ≥ c.

The reorder quantities are determined by the initial inventories and the prices: given xi

and p, firm i orders the amount (di(p;α) − xi)+ = max (di(p;α)− xi, 0) in the second

stage. Given initial inventories x and market size α, firms simultaneously choose prices

and the resulting reorder quantities in the second stage:

max
pi

πRi (p, xi;α) = pidi(p;α)− C(di(p;α)− xi)+, i = 1, 2, (2.4)

where πRi (p, xi;α) is concave in pi. Let pR∗ (x;α) denote the second-stage equilibrium

price vector and πR∗i (x;α) = πRi
(
pR∗ (x;α) , xi;α

)
firm i’s second-stage equilibrium profit

function for the R game. Let ΠR
i (x) denote firm i’s expected profit for the R game as a

function of the initial order vector. In the first stage, firms simultaneously choose their

initial orders by solving

max
xi≥0

ΠR
i (x) =

1

2

(
πR∗i (x;αL) + πR∗i (x;αH)

)
− cxi, i = 1, 2. (2.5)

Let xR∗ denote equilibrium initial orders, and the scalar xR∗ a symmetric equilibrium

initial order.

In both games, each firm’s expected profit may be bimodal in its own initial order,

due to the joint effect of price competition, uncertainty, and the sequential decisions
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over a finite horizon (see Section 2.3.1). Therefore, our analysis cannot rely on standard

equilibrium characterization results. To overcome this challenge we exploit the structure

of the best response problem.

Terminology. We refer to the option to hold back inventory also as downside volume

flexibility. Firms have this flexibility in both games. We refer to the option to reorder

inventory also as upside volume flexibility. Firms have this flexibility only in the R

game. Compared to a hold back option, a reorder option offers firms stronger downside

protection against low demand: Firms that hold back a fraction of initial orders still incur

the cost on all ordered units. In contrast, the reorder option allows firms to reduce initial

orders (and costs) and still maintain the ability to satisfy higher demand. Therefore, we

use the phrase downward protection only in reference to the latter scenario.

2.2.3 Second-Stage Price-Reorder Equilibria

As a preliminary analysis we characterize the second-stage subgame equilibria of the N

and R games. These serve as building blocks for our characterization and comparison

of the first-stage order equilibria in Sections 2.3-2.6. Since firms learn the market size α

prior to their second-stage decisions, the second-stage subgames are deterministic. Each

subgame has an unique equilibrium that depends as follows on the initial order vector x

and the realized market size α (Lemma 2.1 below summarizes these results).

No reorder game. Given initial inventories x and the realized market size α, firms

simultaneously choose prices by solving (2.2). Define firm i’s clearance price pci(xi, p−i;α)

as the highest price that generates enough demand to sell its inventory xi, given its rival

charges p−i and the market size is α. Firm i may choose to charge more than this

clearance price and hold back supply. Define firm i’s hold back price phi (p−i;α) as its

revenue-maximizing price in the absence of inventory constraints. Firm i prefers this

price if it exceeds the clearance price, which results in leftover stock. That is, firm i’s

best response price is the larger of its clearance and hold back prices. We call these best

responses clearance (c) and hold back (h), respectively.

Both firms follow these strategies. As shown in Figure 2.1a the firms’ equilibrium

strategies partition the initial inventory space {x ≥ 0} into four regions. The labels

N (c, c), N (h, c) , N (c, h) and N (h, h) identify the equilibrium strategies for each region,

the first letter refers to firm 1 and the second to firm 2. For example, for initial inventory

vectors x ∈ N (c, c) the unique equilibrium is for each firm to charge its clearance price.

For high initial inventories x ∈ N (h, h) the unique equilibrium is for each firm to charge

the hold back price that generates demand and sales equal to the hold back threshold
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HB := α/(2 − γ), so each firm has leftover inventory. The arrows in 2.1a indicate the

shift from an initial inventory vector to the corresponding equilibrium sales.

Reorder game. Given initial inventories x and the realized market size α, firms si-

multaneously choose their prices and reorder quantities by solving (2.4). Clearance and

hold back are two possible best responses, as in the N game. A third possibility is for

firm i to charge the reorder price pri (p−i;α), defined as its profit-maximizing price if it

has no initial inventory. (The reorder price exceeds the hold back price since reordering

is costly.) If its reorder price is lower than its clearance price, firm i’s best response is to

charge the reorder price and to procure more units to satisfy its excess demand at that

price; we call this the reorder (r) strategy. Otherwise, firm i’s best response is not to

reorder and to charge the larger of its clearance and hold back prices.

Both firms follow these strategies. The resulting equilibrium strategies partition the

initial inventory space {x ≥ 0} into nine regions as shown in Figure 2.1b. We use the same

labeling convention as in the N game. For example, for initial inventories x ∈ R(r, r),

the unique equilibrium is for each firm to charge the reorder price that generates demand

equal to the order-up-to level OU := (α − C (1− γ))/(2− γ), and to reorder up to and

sell this amount, as indicated by the arrow. For α ≤ C (1− γ) firms have no incentive

to reorder regardless of their initial inventory levels, and the second-stage N and R

subgames are equivalent.

Figure 2.1: Second Stage Equilibrium Strategies as Functions of Initial Inventories
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Lemma 2.1 summarizes these results (see proof for closed-form prices and quantities).2

2 These N and R games are also analyzed in Maggi (1996); however, he restricts attention to deter-
ministic demand. His second stage equilibrium characterization is less complete and explicit than what
we require in Sections 2.3-2.6 for our analysis under stochastic demand. Therefore, we provide in Lemma
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Lemma 2.1 (Second Stage Subgame Equilibria). For any initial inventory vector

x and market size realization α, the price subgame of the N game and the price-reorder

subgame of the R game each has a unique equilibrium. The equilibrium strategy of firm

i depends as follows on x.

(N) In the N game there is a hold back threshold xi (x−i;α) such that: (i) if xi ≤
xi (x−i;α) then firm i prices to clear its inventory; (ii) if xi > xi (x−i;α) then it

prices to hold back inventory and sells xi (x−i;α).

(R) In the R game there are hold back and order-up-to thresholds xi (x−i;α) < xi (x−i;α)

such that: (i) if xi < xi (x−i;α) then firm i reorders up to xi (x−i;α) and charges

the reorder price to sell this amount; (ii) if xi (x−i;α) ≤ xi ≤ xi (x−i;α) then it

prices to clear its inventory but does not reorder; (iii) if xi > xi (x−i;α) then it

prices to hold back inventory and sells xi (x−i;α).

In Sections 2.3 and 2.4 we characterize the first-stage order equilibria for the N and

R games, respectively. These results build on Lemma 2.1.

2.3 Price Flexibility without Reorder Flexibility

In this section we first characterize the N game equilibria and then compare these results

with those under quantity competition.

2.3.1 Downside Volume Flexibility under Price Competition:

The N Game

In the first stage, firms simultaneously choose their order quantities by solving (2.3),

where the second-stage equilibrium revenue functions πN∗i (x;αL) and πN∗i (x;αH) are

given by Lemma 2.1.

Price competition, uncertainty, and sequential decisions imply bimodal expected prof-

its. The equilibrium characterization of the N game is significantly complicated by the

fact that the second-stage equilibrium revenue functions πN∗i (x;αL) and πN∗i (x;αH) are

not concave in firm i’s own order quantity. This fact, combined with demand uncertainty,

implies that the first-stage expected profit functions of each firm may be bimodal in its

own order.

The non-concave nature of the second-stage equilibrium revenue functions is the nat-

ural result of price competition, coupled with the sequential nature of decisions over a

2.1 our own results and proof.
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finite horizon. Consider how πN∗i (x;α) depends on firm i’s order xi, given the market

size is α and its rival orders x−i. By Lemma 2.1, in the N game equilibrium firm i

never sells more than xi (x−i;α); it holds back any inventory in excess of this threshold.

The function πN∗i (x;α) is concave in xi ≤ xi (x−i;α), constant in xi ≥ xi (x−i;α), and

peaks at a smaller quantity than the hold back threshold xi (x−i;α). Figure 2.2a shows

a representative example for firm 1, given α = 15 and x2 = 5. Firm 1’s second-stage

equilibrium revenue peaks at x1 = 11.0, then decreases, before leveling off at the hold

back threshold x1 (x2;α) = 14.6. The property that the hold back threshold exceeds the

revenue-maximizing quantity is due to price competition: The marginal revenue of each

firm is higher if it unilaterally drops its price than if it unilaterally increases its inven-

tory, so equilibrium prices keep dropping as x1 increases from the revenue-maximizing

quantity x1 = 11.0 to x1 = 14.6. Therefore, firm 1 has an incentive to sell more than 11

units if it has the inventory, even though doing so hurts its revenue.

In contrast, if prices are determined by quantity competition, then each firm’s second-

stage equilibrium revenue function is concave in its own order quantity and peaks at the

hold back threshold, unlike under price competition. Figure 2.2b shows a representative

example. Given α = 15 and x2 = 5, firm 1’s hold back threshold equals x1 = 11 units

under quantity competition, and its second-stage equilibrium revenue function peaks at

this threshold.

Figure 2.2: Effect of Competition Mode on Second Stage Equilibrium Revenue Function
(x2 = 5, α = 15, γ = 0.7)

(a) Price Competition (b) Quantity Competition

In summary, the first-stage expected profit functions may be bimodal (and more

generally, not unimodal under an arbitrary market size distribution), which is due to the

joint effect of three factors, price competition, demand uncertainty and the sequential

nature of ordering and pricing decisions over a finite horizon. If any one of these factors
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is absent, the payoff functions (in each stage) are well-behaved. This seems to be the case

virtually throughout the literature, including in papers where the equilibrium prices are

determined by quantity competition (cf. Anupindi and Jiang 2008), and in studies on

joint price-inventory competition in stationary infinite-horizon problems (cf. Kirman and

Sobel 1974, Bernstein and Federgruen 2004). A noteworthy exception is the version of

our N game with perfectly homogeneous products (cf. Hviid 1991, Reynolds and Wilson

2000). In this extreme case, demand functions are discontinuous in prices, first-stage

payoffs are not well-behaved, and a pure strategy symmetric equilibrium in inventories

need not exist if the extent of demand variation exceeds a threshold level (Reynolds and

Wilson 2000). In contrast, our N game with differentiated products admits the following

equilibrium result.

Proposition 2.2 (First Stage Order Equilibria: N Game). Two thresholds

on the market size ratio rα := αH
αL

determine the first stage order equilibria in the “no

reorder” game:

r∗∗α := m∗∗ (γ) + 2c(1− γ)/αL > r∗α := m∗ (γ) + 2c(1− γ)/αL for γ > 0,

where m∗ (γ) and m∗∗ (γ) are explicit functions of γ and m∗∗ (γ) > m∗ (γ) > 1 for γ > 0.

Let HB (α) := α/ (2− γ) denote the hold back threshold for market size α. If the market

size ratio is:

(i) below the smaller threshold, i.e., rα ≤ r∗α, there is a unique symmetric order equi-

librium:

xN∗ = xN∗l :=
(1 + γ)(αH/2 + αL/2− c(1− γ))

2 + γ
≤ HB (αL) , (2.6)

and firms price to clear their inventory in both demand scenarios;

(ii) larger than the larger threshold, i.e., rα ≥ r∗∗α , there is a unique symmetric order

equilibrium:

HB (αL) < xN∗ = xN∗h :=
1 + γ

2 + γ
(αH − 2c(1− γ)) < HB (αH) , (2.7)

firms price to sell HB (αL) and hold back inventory if demand is low, and they price

to clear their inventory if demand is high;

(iii) between the two thresholds, i.e., r∗α < rα < r∗∗α , there are exactly two symmetric

equilibria, one as in (i), the other as in (ii). Moreover, xN∗l Pareto-dominates xN∗h .
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Given any symmetric initial inventories in the second stage, firms sell at most the

hold back threshold HB (α) corresponding to the realized market size α. The equilibrium

order is therefore smaller than HB (αH), but it may be smaller or larger than HB (αL)

due to market size uncertainty.

“Small” equilibrium: xN∗l < HB (αL). If the high-demand market is not too large,

relative to the low-demand market (rα < r∗∗α ), the Pareto-dominant equilibrium order is

such that firms price to clear their inventory under either market size realization. The

equilibrium order xN∗l in (2.6) and the expected equilibrium price and profit of each firm

are the same as under the corresponding riskless problem, i.e., if the market size were

known and equal to the mean (αH + αL)/2. However, market size uncertainty leads to

variability in equilibrium profits, leaving firms better off under high demand and worse

off under low demand, compared to the riskless case.

“Large” equilibrium: xN∗h > HB (αL). If the high-demand market is relatively large

(rα > r∗∗α ), the firms order more in equilibrium than in the corresponding riskless problem.

Their order xN∗h is so large that they only price to clear their inventory if demand is

high. If demand is low, they charge the hold back price, sell HB (αL) and have leftover

inventory, so that their revenues are independent of how much the firms order in excess

of HB (αL). The equilibrium quantity xN∗h in (2.7) balances the marginal ordering cost

with the incremental revenue under high demand.

2.3.2 Downside Volume Flexibility under Price versus Quantity

Competition

Earlier studies of volume flexibility with stochastic demand consider endogenous pricing

under quantity competition. This assumption is usually justified with the classic result

that single-stage quantity competition yields the same outcome as two-stage competition

where firms first choose supply quantities (capacity, production or inventory) and then

prices (Kreps and Scheinkman 1983). However, this equivalence critically hinges on the

condition that firms cannot increase their supply while or after demand is formulated

(cf. Tirole 1998, p. 217). By its very nature, volume flexibility may clearly violate this

condition, in which case price competition may be a more appropriate model of price

formation. Our novel price competition results are relevant in this light. They also allow

us to compare the effects of volume flexibility under price versus quantity competition.

Here we focus on downside volume flexibility, in Sections 2.5.2-2.5.3 on reorder flexibility.

In the N game firms have downside volume flexibility through a hold back option.

Anupindi and Jiang (2008) prove for perfectly homogeneous products that competition
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under downside volume flexibility through a hold back option yields higher expected

profits and capacity investments than competition among inflexible firms. In their model

inflexible firms choose supply quantities in the first stage, before demand is known, and

sell all supply in the second stage at the clearance price, i.e., they have no hold back

option. Flexible firms also choose capacities ex ante, but sales quantities and prices are

determined in the second stage under quantity competition. (They show the quantity

competition subgame to be equivalent to a two-stage production-pricing subgame).

To study how the effects of a hold back option depend on the mode of competition,

we compare the results of our N game (with hold back under price competition) to

those of two variations, the N game with clearance, and the N game under quantity

competition (with hold back). These variations correspond to the models in Anupindi

and Jiang (2008) of inflexible and flexible firms, respectively (they consider significantly

more general demand uncertainty). The analysis of these N game versions is much

simpler than under price competition, and they each have a unique symmetric pure

strategy equilibrium. We omit the details3 and summarize our results informally:

1. Price competition reduces but does not eliminate the value of downside volume flex-

ibility. The N game under quantity competition yields (weakly) higher expected

profits than the N game under price competition, and both yield higher profits than

the N game with clearance.

2. Price competition yields lower inventory investments than quantity competition un-

der moderate demand variability: There is an unique threshold rQα (< r∗α < r∗∗α ),

such that if rα ∈ (rQα , r
∗∗
α ) then the Pareto-dominant equilibrium order is xN∗l in

the N game under price competition, and the equilibrium order is xN∗h > xN∗l in

the N game under quantity competition.

That price competition may yield lower inventories than quantity competition, runs

counter to the deterministic case. It follows because under quantity competition, firms

have better control of downside risk – they can hold back more inventory. Hence they

invest more upfront, sell more under high demand and less (by exercising their hold back

option) under low demand.

The power of the hold back option rests on the flexible firms’ ability to commit to

underutilizing capacity if demand is low. The extent of this hold back commitment in

turn depends on the mode of competition in the second stage, following the capacity

investments. A model where equilibrium sales quantities and prices are determined in

3Proofs of these statements are available upon request.
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the second stage under quantity competition, as in Anupindi and Jiang (2008), captures

settings where firms are not sufficiently flexible to deviate from second-stage production

quantities even if they have excess capacity. However, if firms can flexibly supply in the

second stage any amount up to their initial capacity choice – due to preproduction or

production postponement with highly flexible operations, then no quantity competition

equilibrium with excess capacity is sustainable: Each firm has the incentive to lower its

price and increase sales. Price competition is more appropriate in such cases as no firm

has an incentive to lower its price and increase sales at the corresponding equilibrium,

even if it has the capacity to do so. In this sense the hold back commitment is more

credible under the price competition equilibrium.

2.4 Price and Reorder Flexibility

In this section we characterize the initial order equilibria for the R game, i.e., under price

and reorder flexibility. Firms simultaneously choose their initial orders by solving (2.5).

The second-stage equilibrium profit functions πR∗i (x;αL) and πR∗i (x;αH) are specified

by Lemma 2.1. As in the N game, due to price competition, each firm’s first-stage

expected profit function may be bimodal in its initial order. The R game analysis is

further complicated by the reorder option.

We henceforth assume that αL = C(1− γ), which implies that it is not profitable to

reorder if demand is low (i.e., OU(αL) = 0). This assumption seems reasonable in that

firms typically procure enough early on to cover at least what they consider to be their

base demand. Relaxing this assumption makes the analysis more cumbersome without

generating additional insights, as confirmed through extensive numerical experiments

with different values of αL.

Proposition 2.3 (First Stage Order Equilibria: R Game). Consider the “re-
order” game with αL = C(1 − γ) < αH . There exists a symmetric initial order equi-
librium xR∗. Under the strictly Pareto-dominant symmetric equilibrium, in the second
stage the firms do not reorder under low demand and they price to clear inventory under
high demand; their price-reorder strategies depend as follows on the market size ratio
rα := αH/αL and the order cost ratio rc := c/C:

Market Size Ratio Pricing Strategy under Low Demand Reorder Strategy under High Demand

(i) rα ≤ m∗∗ (γ) clear inventory

reorder to OU (αH) iff rc > rc (rα, γ)
(ii) m∗∗ (γ) < rα < 2

clear inventory if rc ≥ rc (rα, γ);

sell HB(αL) with leftover otherwise

(iii) rα ≥ 2
clear inventory if rc ≥ rc (rα, γ);

reorder to OU (αH) iff rc > rc (rα, γ)
sell HB(αL) with leftover otherwise
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The thresholds m∗∗ (γ) , rc (rα, γ) , rc (rα, γ), and rc (rα, γ) are explicit functions and

rc (rα, γ) < rc (rα, γ). The hold back threshold under low demand, and the order-up-to

level under high demand are, respectively,

HB (αL) = C
1− γ
2− γ

and OU (αH) :=
αH − C (1− γ)

2− γ
.

Proposition 2.3 identifies three combinations of low-demand pricing and high-demand

reordering that can occur under a strictly Pareto-dominant equilibrium. The firms do

not reorder under low demand since doing so is unprofitable for αL = C(1 − γ). They

price to clear inventory under high demand because they have no incentive to order

more than the high-demand hold back threshold HB(αH). Note that, under no strictly

Pareto-dominant equilibrium do firms in the second stage price to have leftover under

low demand but reorder under high demand. These strategies hold only for initial orders

in the range (HB (αL) , OU (αH)). However, firms weakly prefer ordering initially at

most HB (αL) or at least OU (αH), because their second-stage equilibrium revenues are

independent of their initial orders in the range [HB (αL) , OU (αH)]: If demand is low,

they price to sell HB (αL) and have leftover inventory; if demand is high, they reorder

up to and sell OU (αH). Therefore, the firms’ preferences over initial order quantities in

this range only depend on the relative cost of ordering early, at unit cost c, or later at

unit cost C. The firms weakly prefer ordering initially at most HB (αL) if c ≥ C/2, and

at least OU (αH) if c ≤ C/2.

Figure 2.3 illustrates, for γ = 0.7, how the conditions in Proposition 2.3 partition

the parameter space of market size ratios rα and order cost ratios rc into three regions,

each corresponding to one of the three possible second-stage price-reorder strategies. For

γ = 0.7, Part (i) of Proposition 2.3 applies for market size ratios rα ≤ 1.32, Part (ii) for

rα ∈ (1.32, 2), and Part (iii) for rα ≥ 2.

Part (i). If the high- and low-demand markets are of sufficiently similar size (rα ≤
1.32), firms never end up with excess inventory. Their initial orders are moderate, such

that they prefer to clear their inventories even under low demand. The order cost ratio

only affects whether the firms make use of reorder flexibility to delay part of their order;

this is the case only if reordering is sufficiently cheap, i.e., the order cost ratio rc exceeds

the threshold rc (rα, γ).

If the high- and low-demand market sizes differ more significantly (rα > 1.32), firms

are willing to order more aggressively initially, at the risk of overstocking under low

demand – provided that initial ordering is cheap enough, i.e., the order cost ratio rc is

low enough.
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Figure 2.3: Proposition 2.3: Symmetric R Game Equilibrium as a Function of Market Size Ratio and Order Cost

Ratio (γ = 0.7)

Part (ii). For moderately different market sizes (1.32 < rα < 2), the equilibrium

strategies depend on two thresholds on the order cost ratio. If the order cost ratio rc

is below the lower threshold rc (rα, γ), the firms initially order enough for high demand,

but more than they wish to sell under low demand. If the order cost ratio rc exceeds the

larger threshold rc (rα, γ), the firms initially order so little that they reorder under high

demand, but they price to clear their inventories under low demand. If the order cost

ratio rc is in the intermediate range [rc (rα, γ) , rc (rα, γ)], the firms’ initial orders are low

enough so they price to clear inventories under low demand, yet large enough so they do

not reorder under high demand.

Part (iii). For sufficiently different market sizes (rα ≥ 2), firms do not match the

demand with their initial order. If early ordering is relatively cheap, that is, rc ≤ rc(rα, γ),

then firms initially order more than they sell under low demand and do not reorder;

otherwise, they initially order less than they need under high demand and do reorder if

demand is high.

2.5 The Impact of Reorder Flexibility on Orders and

Profits

In this section we compare the equilibria with and without reorder flexibility. We call

firms inflexible in the N game and flexible in the R game. In Section 2.5.1 we identify two

conditions that determine the impact of reorder flexibility on initial orders. In Section

2.5.2 we use these conditions to explain the known results that under quantity competition,

reorder flexibility reduces initial orders and improves expected profits. These result are
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in stark contrast to ours: In Section 2.5.3 we show that under price competition, reorder

flexibility may increase initial orders and lower profits, and moreover, a reorder option

cannot benefit firms if products are sufficiently close substitutes.

2.5.1 Two Conditions Determine the Impact of Reorder Flexi-

bility on Orders

The availability of a reorder option has two effects on the initial equilibrium orders of

flexible firms, in comparison to the equilibrium order quantity xN∗ of inflexible firms.

First, reorder flexibility softens the firms’ output constraints from their initial procure-

ments, which may intensify their second-stage competition. Second, reorder flexibility

allows firms to reduce overstocking risks in matching supply with demand. The first

effect may give flexible firms an incentive to sell more than xN∗ in the second stage if

demand is high, and the magnitude of the second effect determines in such cases whether

they initially order more or less than xN∗.

To make this discussion precise, consider first the N game equilibrium orders. The

inflexible firms hedge their bets between low and high demand, ordering up to the point

where their expected marginal second-stage equilibrium revenue equals the initial unit

procurement cost:

1

2

(
∂πN∗i

(
xN∗;αL

)
∂xi

+
∂πN∗i

(
xN∗;αH

)
∂xi

)
= c. (2.8)

As a result, they order more than optimal for known low demand and less than optimal

for known high demand. From (2.8), we have

c−
∂πN∗i

(
xN∗;αL

)
∂xi

=
∂πN∗i

(
xN∗;αH

)
∂xi

− c > 0, (2.9)

i.e., the marginal profit loss if demand is low (the LHS) equals the marginal profit gain

if it is high.

The flexible firms initially order more than xN∗ units, if and only if two conditions

hold:

(A) The flexible firms want to sell more than xN∗ units under high demand. That is,

xN∗ is smaller than the high-demand order-up-to level:

xN∗ < OU (αH) . (2.10)
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This condition holds if and only if the marginal reorder cost C is lower than a flexible

firm’s high-demand marginal revenue at xN∗ from unilaterally dropping its price. This

marginal revenue exceeds an inflexible firm’s high-demand marginal revenue at xN∗ from

unilaterally increasing its inventory (the term ∂πN∗i
(
xN∗;αH

)
/∂xi in (2.8)). In the

degenerate case without demand uncertainty, i.e., αL = αH , whenever condition (A)

holds, the flexible firms initially order more than xN∗ units and have lower profits than

inflexible firms. However, under stochastic demand, firms must also evaluate under- and

overstocking costs.

(B) Expected marginal understocking costs at xN∗ exceed expected marginal overstock-

ing costs. Ordering initially more than xN∗ units, at a lower cost, realizes procurement

cost savings only if condition (A) holds and demand turns out to be high; otherwise,

if demand turns out to be low, more initial inventory yields lower prices and profits.

Therefore, flexible firms initially order more than xN∗ if, and only if, (A) holds and the

expected marginal cost saving from early procurement under high demand exceeds the

expected marginal profit loss at xN∗ under low demand:4

C − c > c−
∂πN∗i

(
xN∗;αL

)
∂xi

. (2.11)

If condition (A) is violated, then the flexible firms initially order the same amount as

the inflexible firms, xN∗, and do not reorder in the second stage. If condition (A) holds

but (B) is violated, then the flexible firms initially order (weakly) less than xN∗ and their

order-up-to level under high demand strictly exceeds xN∗. An important implication is

that, whenever the equilibrium orders with reorder flexibility differ from those without,

the flexible firms end up with more inventory under high demand than inflexible firms

with a single order. As shown in Section 2.5.3, this over-ordering hurts the flexible firms’

profits under high demand. Table 2.1 summarizes this discussion.

Table 2.1: Comparison of Equilibrium Order Strategies in N and R Games.

Flexible Firms Order Initially Conditions

Same: xR∗ = xN∗ xN∗ ≥ OU (αH)

More: xR∗ > xN∗ xN∗ < OU (αH) and C − c > c− ∂πN∗i (xN∗;αL)
∂xi

Less: xR∗ ≤ xN∗ xN∗ < OU (αH) and C − c ≤ c− ∂πN∗i (xN∗;αL)
∂xi

4Since low and high demand are equally likely, we omit the probabilities from this expression.
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2.5.2 Quantity Competition: Reorder Flexibility Reduces Ini-

tial Orders, Improves Profits

Before we discuss the effects of reorder flexibility in our model with price competition,

consider the case where second-stage prices and reorder quantities are determined un-

der quantity competition. This mode of competition yields the same results as for the

monopoly case (γ = 0): Flexible firms initially order (weakly) less than inflexible firms.

This follows because conditions (A) and (B) are mutually exclusive. Namely, if it is prof-

itable under high demand to order more than the optimal no-reorder quantity xN∗, then

it is cheaper to delay doing so until the second stage. Mathematically, under quantity

competition (and for a monopoly) condition (A) is equivalent to

∂πN∗i
(
xN∗;αH

)
∂xi

> C,

which, together with (2.9), implies that condition (B) cannot hold:

c−
∂πN∗i

(
xN∗;αL

)
∂xi

=
∂πN∗i

(
xN∗;αH

)
∂xi

− c > C − c.

That is, the marginal profit loss under low demand exceeds the cost savings from early

procurement.

This argument sheds light on the finding in Lin and Parlaktürk (2012) who consider

a reorder option for duopoly retailers that sell a homogeneous product under quantity

competition, in contrast to our R game under price competition. In their model com-

petition between “fast” retailers that can reorder after learning demand yields (weakly)

smaller initial orders and larger expected retailer profits, compared to competition be-

tween “slow” retailers without a reorder option.

2.5.3 Price Competition: Reorder Flexibility May Increase Ini-

tial Orders, Hurt Profits

The results under quantity competition are in stark contrast to ours under price compe-

tition. As we discuss in this section, the R game may yield larger initial orders and lower

expected profits than the N game, and moreover, a reorder option cannot benefit firms

if products are sufficiently close substitutes. The following proposition summarizes these

results.

Proposition 2.4 (Effects of Reorder Flexibility). Assume αL = C(1 − γ).



www.manaraa.com

Chapter 2. The Peril of Reorder Flexibility under Price Competition26

Consider the expected profits and the order strategies under the Pareto-dominant sym-

metric equilibrium of the “no-reorder” game and of the “reorder” game.

1. (Value of reorder flexibility). The firms with reorder flexibility are not more prof-

itable than those without, except if the following three conditions hold:

(a) the products are sufficiently differentiated, i.e., γ < 0.875;

(b) the market size variability is moderate, i.e., rα(γ) < rα < rα(γ), where rα(γ) <

∞ for γ > 0;

(c) reordering is relatively inexpensive, i.e., rc(rα, γ) < rc ≤ 1.

2. (Order strategies when reorder flexibility is valuable). Whenever the firms with

reorder flexibility are more profitable than inflexible firms, they order less initially,

but under high demand they reorder and sell more inventory, than the inflexible

firms, i.e., xR∗ < xN∗ < OU (αH).

3. (Equal equilibrium outcomes). The firms with reorder flexibility order the same

amount as those without, and they do not reorder, i.e., xR∗ = xN∗ ≥ OU (αH), if

and only if:

(a) the market size ratio is below a threshold, i.e., rα ≤ rα(γ), where rα(γ) <∞
for γ > 0;

(b) reordering is relatively expensive, i.e., rc ≤ rc(rα, γ).

By part 2. of Proposition 2.4, reorder flexibility always hurts profits if the flexible firms

order more ex ante than inflexible firms; the additional inventory increases procurement

costs and lowers prices. However, reorder flexibility may also hurt profits in cases where

the flexible firms order less initially, compared to inflexible firms; the flexible firms are

only better off under the additional conditions 1.(a)-(c) of Proposition 2.4. Next we

compare the orders of flexible and inflexible firms. Then we discuss the conditions under

which reorder flexibility improves firm profits. In this discussion, we say “equilibrium”

as shorthand for “Pareto-dominant symmetric equilibrium”.

Impact of reorder flexibility on equilibrium orders. Consider the impact of

procurement costs on the flexible firms’ initial order incentives, relative to the N game

equilibrium. An increase in the order cost ratio rc has two effects on the conditions (A)

and (B) of Section 2.5.1.
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1. It reduces the flexibility cost, which creates a stronger incentive for the flexible

firms to sell more than xN∗ units under high demand. That is, (A) is likelier to

hold.

2. It reduces the early procurement cost savings under high demand and increases the

expected marginal overstocking costs under low demand, making it more attractive

for the flexible firms to order less initially and reorder only under high demand.

That is, (B) is likelier to be violated.

Figure 2.4 shows the impact of reorder flexibility on equilibrium orders for γ = 0.7. It

partitions the parameter space of market size ratios rα and order cost ratios rc into three

regions, depending on whether the flexible firms initially order the same as (xR∗ = xN∗),

more than (xR∗ > xN∗), or less than (xR∗ < xN∗), the inflexible firms. These regions

correspond to the cases in Table 2.1.

Figure 2.4: Equilibrium Orders (γ = 0.7)
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Figure 2.5: Value of Flexibility (γ = 0.7)

If the high-demand market size is below a threshold (rα ≤ 5.51 where rα(γ) = 5.51

for γ = 0.7 is the threshold in part 3(a) of Proposition 2.4), the flexible firms order

the same as, more than, or less than inflexible firms, depending on whether the order

cost ratio is low, intermediate, or high, respectively. A low order cost ratio implies a

relatively high flexibility cost, so flexible and inflexible firms order the same amounts; see

part 3(b) of Proposition 2.4. For an intermediate order cost ratio, the flexibility cost is

such that flexible firms want to sell more than xN∗ under high demand, but delaying this

order is too costly, so they order more upfront. For a sufficiently high order cost ratio,

the flexibility cost and the early procurement cost savings are negligible, so that flexible

firms initially order less than inflexible firms, and more later if needed.
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If the high-demand market is sufficiently large (rα > 5.51 for γ = 0.7), the flexible

firms’ initial orders differ from those of inflexible firms, regardless of the order cost

ratio. In this case the high-demand market fosters such intense price competition that

the flexible firms want to sell more than xN∗ units under high demand, even if initial

procurement is free (c = 0). If the initial cost is below a threshold, they procure the

extra units in the first stage. Otherwise, they order less than xN∗ initially and reorder

up to a higher inventory level under high demand.

Figure 2.6a shows, for order cost ratio rc = 0.8, how the equilibrium orders xN∗ and

xR∗ depend on the market size ratio rα (γ = 0.7 as in Figure 2.4). The flexible firms

initially order the same as or more than the inflexible firms for rα ≤ 1.4, and strictly less

for rα > 1.4. Above this level, only the inflexible firms’ order xN∗ increases in the high-

demand market size. The flexible firms’ initial order xR∗ stays constant as it balances the

marginal profit loss from overstocking under low demand with the marginal cost saving

from early procurement under high demand.

Figure 2.6: Numerical Example (γ = 0.7, rc = 0.8)
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(c) Conditional Profits

Value of flexibility: impact of reorder flexibility on equilibrium profits. By

part 2. of Proposition 2.4, in cases where firms benefit from reorder flexibility, they order

less ex ante and more ex post under high demand, compared to inflexible firms. This

condition is only necessary, as noted above. The flexible firms only gain higher expected

profits under the additional conditions in part 1 of Proposition 2.4: (a) products are

sufficiently differentiated, (b) the market size variability is moderate, and (c) reordering

is relatively inexpensive. Figure 2.5 illustrates these conditions for γ = 0.7. It partitions

the parameter space of market size ratios rα and order cost ratios rc into three regions,

one where reorder flexibility has no profit effect (part 3. of Proposition 2.4), one where it

hurts expected profits, and one where it increases expected profits (part 1. of Proposition

2.4). The region of positive reorder benefit is significantly smaller than the set of all

(rα, rc)-pairs where flexible firms order less ex ante than in the N game (shown in Figure

2.4). Conditions 1.(a)-(c) of Proposition 2.4 result from two countervailing profit effects
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of reorder flexibility:

1. Downside protection under low demand. The flexible firms are better off than the

inflexible firms under low demand. Keeping their initial inventory low allows them

to charge higher prices (see Figure 2.6b) and eliminate leftover inventory, compared

to the inflexible firms (see Figure 2.6a). The value of this downside protection

increases in the market size ratio rα (see Figure 2.6c) and in the order cost ratio rc:

The more disparate the market sizes and the more expensive initial procurement,

the more valuable the reorder option. If the order cost ratio rc is sufficiently low,

the flexible firms’ gains from downside protection under low demand are too small

to offset any losses under high demand, regardless of other factors.

2. Intensified competition under high demand. The flexible firms are worse off than

the inflexible firms under high demand. If reordering is relatively inexpensive, the

flexible firms over-order to a larger inventory level (OU(αH) > xN∗ as shown in

Figure 2.6a) and compete more aggressively in price, compared to the inflexible

firms (see Figure 2.6b), so they have larger procurement volumes and unit costs,

and lower prices. This profit loss increases in the market size ratio rα (Figure

2.6c) and in the product substitution parameter γ: both effects foster more intense

competition. If the products are insufficiently differentiated (γ ≥ 0.875), the flexible

firms’ losses under high demand exceed any gains under low demand, regardless of

other factors.

These two profit effects explain why reorder flexibility benefits firms only if the mar-

ket size variability is moderate (condition 1.(b) of Proposition 2.4). If the high- and

low-demand markets are of similar size, the value of reorder flexibility for downside pro-

tection is insignificant because even inflexible firms price to clear their inventory under

low demand. The value of downside protection increases in the high-demand market

size, as inflexible firms are willing to incur the risk of overstocking under low demand.

However, the detrimental effect of over-ordering also increases in the high-demand mar-

ket size. Therefore, only for intermediate high-demand market size (in Figure 2.6c for

rα ∈ (2.2, 5.0)) does the profit gain from downside protection under low demand exceed

the profit loss from intensified competition under high demand.

Summary. Reorder flexibility under price competition may lead to smaller or larger

initial orders. Flexible firms generate higher profits only if they order less initially, and in

addition, products are sufficiently differentiated, the market size variability is moderate,

and reordering is relatively inexpensive. Otherwise, reorder flexibility hurts profits. As
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discussed in Section 2.3.2, under volume flexibility the conditions for the equivalence of

price and quantity competition may be violated, and price competition may be a more

appropriate model of price formation. Our results are in stark contrast to those under

quantity competition: In that case reorder flexibility consistently yields lower initial orders

and higher profits, as in the monopoly case. These contrasting results underscore the

importance of understanding how flexibly firms can increase their supply, in order to

better predict and improve performance under reorder flexibility.

2.6 Flexibility Selection: Unilateral Flexibility is Not

An Equilibrium

We have so far restricted attention to symmetric flexibility configurations. In this sec-

tion we justify this focus: We show that in the flexibility-selection stage that precedes

the procurement-pricing decisions, unilateral reorder flexibility is not an equilibrium. In

Section 2.6.1 we characterize the initial order equilibria under unilateral reorder flexibil-

ity. In Section 2.6.2 we characterize the flexibility-selection equilibria and explain why

unilateral reorder flexibility is not an equilibrium. In Section 2.6.3 we highlight the profit

implications of the symmetric flexibility equilibria.

2.6.1 Initial Order Equilibria Under Unilateral Reorder Flexi-

bility

Consider the two-stage procurement-pricing decisions under unilateral reorder flexibility,

referred to as the U game. Both firms place initial orders before, but only one firm has

the option to reorder after observing the market size; as before both firms have price

flexibility. We call the firm who can reorder flexible and the one who cannot inflexible.

Let xU∗ = (xU∗I , xU∗F ) denote equilibrium initial orders in the U game, where xU∗I and

xU∗F are the orders of the inflexible and flexible firm, respectively. The following result

establishes that there exists at least one initial order equilibrium.

Proposition 2.5 (First Stage Order Equilibria: U Game). Consider the U

game with αL = C(1− γ) < αH . There exists at least one initial order equilibrium xU∗.

There are two thresholds r˜c(rα, γ) < r̃c(rα, γ) on the order cost ratio such that:

(i) if rc ≤ r˜c(rα, γ), there is a unique equilibrium and it is symmetric. Moreover,

xU∗ = xR∗ = xN∗;
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(ii) if r˜c(rα, γ) < rc < r̃c(rα, γ), there is a continuum of equilibria. Moreover, xU∗F >

xN∗;

(iii) if r̃c(rα, γ) ≤ rc ≤ 1, there is a unique equilibrium and it is asymmetric. Moreover,

xU∗F < xR∗ < xN∗.

Figure 2.7 illustrates Proposition 2.5 for γ = 0.7 and shows under what conditions

the flexible firm in the U game initially orders as much as (xU∗F = xN∗), more than

(xU∗F > xN∗), or less than (xU∗F < xN∗) the firms in the N game. As seen by comparison

with Figure 2.4, unilateral and bilateral reorder flexibility have similar effects on the

flexible firm’s initial order.

Figure 2.7: Equilibrium Orders of U
Game (γ = 0.7)
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Figure 2.8: Payoff Matrix of Flexibility
Strategies

Firm 2

N R

Firm 1
N ΠN∗,ΠN∗ ΠU∗

I ,ΠU∗
F

R ΠU∗
F ,ΠU∗

I ΠR∗,ΠR∗

If the order cost and market size ratios are sufficiently low (part (i) of Prop. 2.5:

rc ≤ r˜c(rα, γ) and rα ≤ 5.51 for γ = 0.7, the black region in Figure 2.7), the firm with

unilateral reorder flexibility has no incentive to sell more than xN∗ under high demand, so

that the U game equilibrium is the same as in the N and R games. Otherwise, the flexible

firm has an incentive to sell more than xN∗ under high demand. If the order cost ratio

is in some intermediate range (part (ii) of Prop. 2.5: r˜c(rα, γ) < rc < r̃c(rα, γ), the grey

region in Figure 2.7), deferring the procurement is too costly, so the flexible firm orders

all inventory upfront (xU∗F > xN∗). However, for sufficiently high order cost ratio (part

(iii) of Prop. 2.5: rc ≥ r̃c(rα, γ), the white region in Figure 2.7), reordering is so cheap

that the flexible firm initially orders less than symmetrically inflexible firms (xU∗F < xN∗)

and reorders if demand is high. In this case the flexible firm initially orders even less,

whereas the inflexible firm orders more, than under symmetric reorder flexibility, that is,

xU∗F < xR∗ < xN∗ and xU∗I > xR∗. This follows because the only way for the inflexible
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firm to prepare for potentially high demand is to place a relatively large initial order.

In response, the flexible firm reduces its initial order to further mitigate a potential loss

under low demand, knowing that it can use the relatively cheap reorder option under

high demand.

2.6.2 Reorder Flexibility Selection: Unilateral Flexibility is Not

An Equilibrium

Consider the flexibility-selection stage that precedes the procurement-pricing decisions

discussed so far. Each firm chooses whether to have reorder flexibility (R) or not (N).

Let (R,R) and (N,N) denote the symmetric flexibility strategies, (N,R) and (R,N)

the asymmetric strategies, where the first letter refers to firm 1. Our analysis assumes

a zero fixed cost for reorder flexibility. This assumption isolates the strategic effects of

flexibility selection without biasing the comparison against reorder flexibility by imposing

an upfront investment in addition to the higher unit cost. In Section 2.6.3 we explain

why our main results are robust if this assumption is relaxed.

We show that unilateral reorder flexibility is not an equilibrium. From the payoff

matrix in Figure 2.8, it is easy to see that the asymmetric flexibility strategies (R,N)

or (N,R) can be an equilibrium if and only if (1) unilateral flexibility is at least as

profitable as bilateral inflexibility (i.e., ΠU∗
F ≥ ΠN∗), and (2) unilateral inflexibility is at

least as profitable as bilateral flexibility (i.e., ΠU∗
I ≥ ΠR∗). We find that these conditions

cannot hold. By part (i) of Proposition 2.5, all flexibility configurations yield the same

equilibrium if rc ≤ r˜c(rα, γ). Proposition 2.6 establishes for a large set of cases (part

(iii) of Prop. 2.5: r̃c(rα, γ) ≤ rc ≤ 1) that conditions (1) and (2) are mutually exclusive.

Numerical results confirm for the remaining cases (part (ii) of Prop. 2.5: r˜c(rα, γ) <

rc < r̃c(rα, γ)) that condition (1) is violated, that is, bilateral inflexibility is strictly more

profitable than unilateral flexibility (i.e., ΠN∗ > ΠU∗
F ).

Proposition 2.6 If r̃c(rα, γ) ≤ rc ≤ 1, then asymmetric flexibility strategies cannot be

an equilibrium in the reorder flexibility selection game.

Figure 2.9 illustrates the results for γ = 0.7 (Proposition 2.6 applies to the regions

1-4, the numerical analysis to region 5).

(i) Unilateral reorder flexibility is strictly more profitable than bilateral inflexibility

(i.e., ΠU∗
F > ΠN∗), if and only if the order cost ratio rc is sufficiently high and the market

size ratio rα is in an intermediate range. However, in this case the firms also prefer bi-

lateral flexibility over unilateral inflexibility (i.e., ΠR∗ > ΠU∗
I ). That is, selecting reorder
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Figure 2.9: Preferences over Flexibility Configurations (γ = 0.7; Figure is Re-Scaled).
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flexibility is the dominant strategy. The parameter conditions for this case correspond to

regions 1 and 2 in Figure 2.9. These preference conditions for unilateral reorder flexibility

over bilateral inflexibility parallel those for bilateral reorder flexibility to increase profits

over bilateral inflexibility (part 1 of Proposition 2.4), and the underlying intuition dis-

cussed in Section 2.5.3 applies here as well: First, reorder flexibility can be of value only

if reordering is so cheap (i.e., the order cost ratio is so high) that the flexible firm reduces

its initial order and reorders only under high demand. Second, only for an intermediate

high-demand market size does reorder flexibility yield a sufficiently high profit gain from

downside protection under low demand to offset the loss from intensified competition

under high demand.

(ii) Otherwise, the firms strictly prefer bilateral inflexibility to unilateral reorder flex-

ibility (i.e., ΠN∗ > ΠU∗
F ), see regions 3-5 in Figure 2.9. The intuition for these cases

parallels that for bilateral reorder flexibility to reduce profits relative to bilateral inflexi-

bility (refer to the discussion of Figures 2.4-2.5 in Section 2.5.3). In regions 3 and 4, the

firm with unilateral flexibility initially orders less than in the N game (i.e., xU∗F < xN∗

by part (iii) of Prop. 2.5) and therefore enjoys profit gains from downside protection

under low demand, but these are overwhelmed by losses from intensified competition

under high demand. In region 5, however, the firm with unilateral flexibility enjoys no

downside protection, because it initially orders more than in the N game (i.e., xU∗F > xN∗
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by part (ii) of Prop. 2.5). As a result, it faces higher procurement costs and lower prices

than in the N game.

2.6.3 Symmetric Flexibility Equilibria: Profit Implications

Profits are as follows under the symmetric flexibility equilibria (refer to Figure 2.9).

In regions 1 and 2, selecting reorder flexibility is the dominant strategy, so that

bilateral reorder flexibility (R,R) is the unique equilibrium. However, by Proposition

2.4, the resulting expected profits Pareto-dominate those under bilateral inflexibility (i.e.,

ΠR∗ > ΠN∗) only in region 1, whereas the opposite holds in region 2 (and also in regions

3-5). Therefore, parameters in region 2 give rise to the worst-case scenario: Bilateral

reorder flexibility is the unique equilibrium but both firms are better off under bilateral

inflexibility (i.e., ΠN∗ > ΠR∗). In this case, which parallels the traditional “prisoner’s

dilemma”, reordering is so cheap that firms cannot credibly commit to inflexibility under

price competition, yet still so expensive that the losses under high demand exceed the

gains under low demand. As a result, each firm individually prefers reorder flexibility

(i.e., ΠU∗
F > ΠN∗ and ΠR∗ > ΠU∗

I ) although the outcome hurts their profits.

In regions 3-5, bilateral inflexibility is the Pareto-dominant equilibrium. In region 3,

bilateral flexibility is also an equilibrium, but profits are higher without reorder option

(Proposition 2.4).

To summarize, reorder flexibility benefits firms only under fairly restrictive conditions

(region 1). Absent these conditions, firms can commit to inflexibility and avoid the

downside of reorder flexibility only in some cases (regions 3-5); in other cases price

competition compels them to have reorder flexibility even though it hurts their profits

(region 2).

Effect of fixed cost for reorder flexibility. Our analysis assumes a zero fixed cost

for reorder flexibility. The presence of a positive fixed cost (or a flat-fee as part of

the procurement tariff) would not alter our key findings about the downside of reorder

flexibility: The main effect of a fixed cost is that reorder flexibility becomes less, not

more, attractive. Therefore, the set of parameters for which firms prefer unilateral re-

order flexibility to bilateral inflexibility (i.e., ΠU∗
F > ΠN∗) is smaller if there is a fixed

cost. That is, regions 1 and 2 shrink, whereas regions 3-5 expand. An asymmetric flex-

ibility equilibrium may potentially arise in a subset of these reduced regions 1 and 2.

However, the worst-case scenario, whereby choosing reorder flexibility is the dominant

strategy even though firms are more profitable with bilateral inflexibility, will still arise

for certain parameters. Furthermore, in the expanded regions 3-5, bilateral inflexibility
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would Pareto-dominate bilateral flexibility (i.e., ΠN∗ > ΠR∗) and outperform unilateral

flexibility (i.e., ΠN∗ > ΠU∗
F ) even more strongly.

2.7 Discussion and Concluding Remarks

2.7.1 Discussion

Demand function. Our analysis assumes linear demand for tractability but our main

results do not rely on this assumption: With nonlinear demand, reorder flexibility may

also yield larger orders under price competition, which is the key driver of profit losses.

Furthermore, as noted in Section 2.2 the demand system (2.1) does not explicitly model

perfectly substitutable products. However, (2.1) is a rescaling of the alternative form

di(p;α) = [(1 − γ)α − pi + γp−i]/(1 − γ2) which does capture perfectly substitutable

products and also yields the same managerial insights. First, all comparisons of reorder

configurations for a fixed γ in our model remain intact when (2.1) is scaled back to

the alternative form. Second, comparative statics on γ obtained in our model remain

qualitatively the same as under the alternative system, because there is a one-to-one

increasing correspondence between γ in our model and the cross-elasticity γ
1−γ2 in the

alternative demand system.

Binary market size distribution. Relaxing the assumption that the market size has

a binary distribution does not change our main results that under price competition,

reorder flexibility may increase initial orders and hurt profits. (Lin and Parlaktürk 2012

also assume a two-point market size distribution in their study of reorder flexibility

under quantity competition.) Let the market size α follow a general distribution with

probability density function f(·) over [α, α]. Following Section 2.5.1, it is easy to see

from (2.8) that the N game equilibrium order should satisfy:
∫ α
α

∂πN∗i (xN∗;α)
∂xi

f(α)dα = c.

For any market size α such that OU (α) > xN∗, the flexible firms want to sell more than

xN∗. They will over-order ex ante or ex post for these market size realizations, depending

on the costs and outcome probabilities (generalizing the conditions in Table 2.1), which

intensifies price competition and hurts their profits. For a sufficiently dispersed market

size distribution f(·), the incidence of such larger market sizes and the resulting losses

would offset the gains from downside protection under lower demand.

Information about initial orders. The assumption that firms know their competitor’s

past supply decisions (i.e., initial orders in our model) is standard, both in the flexibility

literature and in dynamic models of inventory competition (e.g., Van Mieghem and Dada

1999, Netessine et al. 2006, Anupindi and Jiang 2008, Olsen and Parker 2008, Caro and
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Mart́ınez-de-Albéniz 2010, Lin and Parlaktürk 2012). In practice it is not uncommon for

third-party watchdogs who scout industry news to disseminate information about firms’

orders and inventory positions.

2.7.2 Conclusion

This paper provides the first analysis of reorder flexibility under price competition and

identifies its downside: higher initial orders and lower profits. These results are contrary

to prior findings under fixed prices or quantity competition. Unilateral reorder flexibility

is not an equilibrium. Furthermore, firms can commit to bilateral inflexibility and avoid

the downside of reorder flexibility only in some of the cases where it hurts profits. In

other cases firms are trapped in a prisoner’s dilemma, whereby reorder flexibility is the

dominant strategy even though it hurts their profits.

Our results have several implications for marketing and operations. To reap the

benefits and avoid the downside of reorder flexibility, firms need to better understand

its effects on competition and profitability. First, firms must differentiate their prod-

ucts sufficiently from their competitors. In this sense, reorder flexibility and product

innovation must be viewed and managed as complementary capabilities. Second, the

detrimental effect of reorder flexibility through intensified price competition depends on

factors that determine how flexibly firms can increase their supply. Limitations on upside

volume flexibility, such as convex reordering costs or hard capacity constraints, can help

mitigate its detrimental effect, but they also reduce the ability of firms to capitalize on

demand surges. It is therefore of strategic importance for firms to determine levels of

reactive capacity which appropriately balance competitive considerations with the upside

and downside risks due to stochastic demand. Third, although the specific pricing and

ordering prescriptions from our pre-season replenishment model do not directly transfer

to settings with in-season replenishment, our main findings should continue to hold, be-

cause in such settings reorder flexibility under price competition may also yield larger

orders.

We conclude by outlining some important research avenues. (1) In our analysis firms

base their second-stage decisions on a perfect demand signal. If firms receive a noisy

demand signal, they need to balance over- and under-stocking risks in their second-stage

decisions. (2) It would be similarly interesting to relax the standard assumption of perfect

initial-order information and consider how noisy information on competitor inventories

affects the results. (3) By endogenizing product differentiation decisions one could study

the interplay of strategic product positioning, pricing, and reorder flexibility selection.
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(4) We assume that firms are symmetric in terms of their demand and costs. Accounting

for asymmetric firms is a challenging opportunity for future research. (5) Studying the

sensitivity of our results to different demand uncertainty models may yield additional

insights (cf. Anupindi and Jiang 2008). (6) We model substitutable products. It would

be interesting to compare our results with those for complementary products.

2.8 Appendix: Proofs

Proof of Lemma 2.1. (R) We start with the R game. First, we characterize firm i’s best

response given its competitor’s price p−i and its own initial inventory xi. Second, we use

this result to solve for the equilibrium prices for each strategy pair. Lastly, we use the

equilibrium prices to identify the valid (xi, x−i) regions, i.e., the partition in Figure 2.1b,

corresponding to the strategy pairs. The results of the N game can be considered as a

special case of the reorder game where C =∞.

First, from problem (2.4), we see that the marginal profit with respect to pi is

∂πRi
∂pi

= di(p;α) + pi
∂di
∂pi
− C · 1{di(p;α)>xi}

∂di
∂pi

= α− 2pi + γp−i + C · 1{pi<pci (p−i,xi)},

where pci(p−i, xi) = α+γp−i−xi is the clearance price, and hence πRi (p, xi;α) is concave in

pi. Equating the marginal profit to zero yields the hold back price phi (p−i) = (α+γp−i)/2

or the reorder price pri (p−i) = (α + γp−i + C)/2.

Second, we solve for all possible equilibrium prices. Note that the best response price

pR∗i (xi, p−i) can be expressed in a general form as pR∗i (xi, p−i) = mi(ki + γp−i). The

choices of mi and ki depend on which of the three potential best-response prices is the

optimal one. For example, mi = 1 and ki = α− xi if pR∗i (xi, p−i) = pci(xi, p−i). Thus, the

equilibrium prices can be solved from the following system of linear equations: pR∗i (xi) = mi(ki + γpR∗−i (x−i))

pR∗−i (x−i) = m−i(k−i + γp∗i (xi))
⇐⇒

 pR∗i (xi) = mi(ki +m−ik−iγ)/(1−mim−iγ
2)

pR∗−i (x−i) = m−i(k−i +mikiγ)/(1−mim−iγ
2)

.

(2.12)

Table 2.2 lists the choices of mi, m−i, ki, and k−i for each strategy pair. Substituting the

appropriate coefficients back into system (2.12), we can obtain all possible equilibrium

prices.

Lastly, we identify region boundaries in the initial inventory space for each specific

strategy pair to arise as an equilibrium. Note that a specific price pair is indeed an equilib-

rium if and only if the initial inventory levels are in a certain region as illustrated in Figure

2(b). For any fixed competitor’s initial inventory level x−i, a horizontal line with intercept
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Table 2.2: Coefficients of Best-Response Prices

R(r, r) R(r, c) R(r, h) R(c, r) R(c, c) R(c, h) R(h, r) R(h, c) R(h, h)

mi 1/2 1/2 1/2 1 1 1 1/2 1/2 1/2

m−i 1/2 1 1/2 1/2 1 1/2 1/2 1 1/2

ki α + C α + C α + C α− xi α− xi α− xi α α α

k−i α + C α− x−i α α + C α− x−i α α + C α− x−i α

x−i intersects with the region boundaries at two points, which serve as the desired thresh-

olds claimed in the stipulation. Using the prices from system (2.12), we can solve for the

valid region boundaries. To illustrate, we work with equilibrium strategy pair (r, r) as

an example. For this particular strategy pair to be an equilibrium, we require xi < (α+

γpR∗−i (x−i)−C)/2 and x−i < (α+γpR∗i (xi)−C)/2. Since pR∗i (xi) and pR∗−i (x−i) are available

from Table 2.2, we have that (r, r) arises as an equilibrium strategy pair if and only if xi <

OU = (α−C+γC)/(2−γ). In a similar way, we can determine the boundaries of R(h, r),

R(h, h), and R(r, h) as in Figure 2(b). This gives us the other three vertices of R(c, c) as

in Figure 2(b): starting from the bottom-right and going counterclockwise, their coordi-

nates are
(
α(2+γ)+γC

4−γ2 , α(2+γ)+(γ2−2)C
4−γ2

)
,
(

α
2−γ ,

α
2−γ

)
, and

(
α(2+γ)+(γ2−2)C

4−γ2 , α(2+γ)+γC
4−γ2

)
. One

can also easily verify that the lines connecting every pair of adjacent vertices of the

diamond R(c, c) give the other boundaries.

(N) In the N game, the potential best-response prices are left with either the hold

back price phi (p−i) = (α + γp−i)/2 or the clearance price pci(p−i, xi). The equilibrium

region boundaries can be similarly determined as in the R game. Equivalently, one can

view the region partition generated in the N game as setting C very large in the R game

(i.e., the reorder option is too expensive) when the point (OU,OU) goes below the origin

and into the third quadrant.

Proof of Proposition 2.2. The general idea of the equilibrium proof is straightfor-

ward: we identify the best-response functions, and the equilibrium is where the best

response functions intersect. To execute this idea, we partition the initial inventory

space {x ≥ 0} into nine regions dependent on the second-stage equilibrium strategies.

We use the second-stage equilibrium strategies to label the regions. For instance, the

region N(
L︷︸︸︷
c

H︷︸︸︷
c︸ ︷︷ ︸

i

,

L︷︸︸︷
c

H︷︸︸︷
c︸ ︷︷ ︸

−i

) consists of all initial inventory vectors x for which the

unique price equilibrium in both the low and high demand scenarios is for both firms to

charge the clearance price. We follow the same notation convention for the other regions:

the first and second components refer to the second-stage equilibrium strategies for firm
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i and −i, respectively, and the first and second letters of each component represent the

firm’s equilibrium strategy under low and high demand, respectively. It is easy to see

that, because procurement is costly, it cannot be an equilibrium for firms to hold back

inventory under high demand. Therefore a symmetric equilibrium can only be in region

N(cc, cc) or N(hc, hc). We solve for an equilibrium candidate by concatenating the two

first order conditions (FOCs) of each firm’s profit maximization problem for the profit

functions corresponding to N(cc, cc) or N(hc, hc). Then we identify conditions under

which the candidate is indeed in the intended region and is indeed an equilibrium.

First, we consider region N(cc, cc). The expected profit function of firm i with x ∈
N(cc, cc) is ΠN

i (x) =
(

α
1−γ −

1
1−γ2xi −

γ
1−γ2x−i

)
xi − cxi, where α = (αL + αH)/2. For

any fixed x−i ∈
[
0, αL

2−γ

]
, we solve for a line from the FOC of firm i’s profit maximization

problem: xi = 1
2

((1 + γ)(α− c(1− γ))− γx−i) . Since the game is symmetric, these two

lines, for i = 1, 2, intersect on the diagonal, which yields the symmetric equilibrium

candidate xN∗l = (1+γ)(α−c(1−γ))
γ+2

≥ 0, where the inequality is due to α − c(1 − γ) ≥ 0.

To ensure that the equilibrium candidate is indeed in the region N(cc, cc), we require

α̂H ≤ γ2+γ+2
(1+γ)(2−γ)

α̂L+2 := B1α̂L+2, where α̂L = αL
c(1−γ)

and α̂H = αH
c(1−γ)

. Next, we need to

characterize the conditions under which xi = xN∗l is a best-response in maximizing ΠN
i (x)

among xi ≥ 0 while fixing x−i = xN∗l . It is clear that xi = xN∗l is the expected profit

maximizer for any (xi, x−i = xN∗l ) ∈ N(cc, cc). Moreover, ΠN
i (x) with x ∈ N(hh, cc)

is decreasing in xi for any fixed x−i. Thus, only the local maximizer of ΠN
i (x) with

x = (xi, x−i = xN∗l ) ∈ N(hc, cc), which is quadratic in xi, could be a possible best

response. It can be shown that if this local maximizer in N(hc, cc) is on the boundary,

i.e., α̂H < 8+4γ−γ3
8+4γ−4γ3−γ3 α̂L + 2 := m∗∗(γ)α̂L + 2, it must reside on the boundary between

N(hc, cc) and N(cc, cc). By the continuity of the profit at the boundary, such x with

xi ∈ N(hc, cc) ∩ N(cc, cc) and x−i = xN∗l is dominated by xi = x−i = xN∗l that is the

local maximizer over N(cc, cc). If the local maximizer of ΠN
i (x) with x = (xi, x−i =

xN∗l ) ∈ N(hc, cc) is an interior point of N(hc, cc), i.e., α̂H ≥= m∗∗(γ)α̂L + 2, then

xi = x−i = xN∗l yields equal or more profit than the local maximizer in N(hc, cc) if

and only if K1α̂L + 2 ≤ α̂H ≤ K2α̂L + 2, where K1 := (
√

2+1)γ3+(2
√

2+4)γ2−2
√

2γ−4
√

2

(
√

2+1)γ3+2
√

2γ2−2
√

2γ−4
√

2
and

K2 := (
√

2−1)γ3+(2
√

2−4)γ2−2
√

2γ−4
√

2

(
√

2−1)γ3+2
√

2γ2−2
√

2γ−4
√

2
. We verify that K1 ≤ m∗∗(γ) ≤ K2 ≤ B1 for any

given γ ∈ [0, 1], so that xi = xN∗l is indeed a best response in profit maximization with

x−i = xN∗l if and only if α̂H ≤ K2α̂L+2. Thus xi = x−i = xN∗l is a symmetric equilibrium

if and only if α̂H ≤ K2α̂L + 2.

Second, we consider region N(hc, hc). For any fixed x−i ≥ αL
2−γ , firm i solves the FOC

of the expected profit function inN(hc, hc), which yields the line xi = 1
2

(αH(1 + γ)− γx−i)−
c(1− γ2). This line intersects on the diagonal suggesting the symmetric equilibrium can-
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didate xi = x−i = xN∗h = αH
1+γ
2+γ
− 2c1−γ2

2+γ
, which is equal to or larger than HB(αL)

if and only if α̂H ≥ B2α̂L + 2, where B2 := 2+γ
(2−γ)(1+γ)

. Next, we identify the con-

ditions under which xi = xN∗h is a best response of firm i’s profit maximization with

x−i = xN∗h . Similar to the case in N(cc, cc), there may exist two local maximizers in

N(cc, cc) and N(cc, hc) respectively. Following similar procedures, we prove that: (i)

xi = xN∗h yields equal or more profit than the local maximizer in N(cc, cc) if and only if

α̂H ≥ T1α̂L + 2, where T1 := 2+γ
4(1+γ)

(
2 + γ + γ2

2−γ

√
4−3γ2

2−γ2

)
, and (ii) xi = xN∗h yields equal

or more profit than the local maximizer in N(hc, cc) if and only if α̂H ≥ T2α̂L + 2, where

T2 := (2+γ)(1+γ)(2−γ)+4γ(2+γ)
√

1+γ
(1+γ)(−γ2+4γ+4)(2−γ)

. Moreover, we verify that B2 ≤ max(T1, T2) for any given

γ ∈ [0, 1] (the order of T1 and T2 depends on γ). Hence, it follows that xi = xN∗h is a best

response of ΠN
i (x) among xi ≥ 0 with x−i = xN∗h if and only if α̂H ≥ max(T1, T2)α̂L + 2.

Thus, xi = x−i = xN∗h is a symmetric equilibrium if and only if α̂H ≥ max(T1, T2)α̂L + 2.

Let m∗∗(γ) = K2 and m∗(γ) = max(T1, T2). We verify that m∗∗(γ) > m∗(γ) > 0 for

any given γ ∈ (0, 1). Then we have the desired results on the symmetric equilibria.

Lastly, we eliminate the existence of asymmetric equilibria. We first consider the case

that xi = xN∗l is not a best response to x−i = xN∗l . Then, the local maximizer of ΠN
i (x)

in N(hc, cc) must be the best response, which requires α̂H > K2α̂L + 2. To have an

asymmetric equilibrium in region N(hc, cc), it is also required that the best response of

firm −i is in N(hc, cc) for α̂H > K2α̂L + 2. By symmetry, this is equivalent to requiring

that the best response of firm i is in N(cc, hc) if α̂H > K2α̂L + 2, which contradicts the

fact that xi = x−i = xN∗h ∈ N(hc, hc) is a symmetric equilibrium if α̂H > K2α̂L + 2.

Similar arguments apply when α̂H ≤ K2α̂L + 2 and we can eliminate all the possibilities

of asymmetric equilibria.

Proof of Proposition 2.3. We call a point on the diagonal of initial order quantities

a symmetric equilibrium candidate if it is a local maximizer of problem maxxi≥0 ΠR
i (x).

We solve for all symmetric equilibrium candidates and then identify for each candidate

conditions under which it is indeed an equilibrium.

Table 2.3: Notation in Proof of Proposition 2.3

w0 = (γ + 2)2(γ2 − 2)2, w′0 = (γ − 2)−1(γ + 2)−1/2

w1 = (4γ4 − 10γ2 + 8)−1w′0, w2 = (γ2 − 2)2w0

w5 = −ρ6γ(7,−24,−32, 80, 80,−64,−64)w0

w3 = w0w1, w4 = ρ6γ(2,−20,−24, 72, 26,−26,−26)w0

w6 = ρ6γ(5,−14,−26, 46, 60,−40,−48)

rc1 = (−γ2rα + 2 + γ)w′0, rc4 = (rα −m∗∗(γ))/2

rc2 = w3rα − w1(
√
w2r2α + w4rα + w5 − w6)

rc5 = −(ρ2γ(1, 1, 2)rα + ρ2γ(1,−3,−6))w′0

rc6 = −(ρ1γ(1, 2)rα + ρ2γ(2,−3,−6))w′0

rc7 = (2ρ4γ(1,−1,−4, 2, 4))−1
(
(−2γ2 + γ4)rα+

ρ3γ(−1,−2, 2, 4)− 2
√
ρ2γ(1,−1,−2)(2− rα)

·
√
ρ3γ(1, 1,−1,−2)rα + ρ4γ(1,−2,−4, 2, 4) )

First, we consider rα ≥ 2, i.e., αH ≥ 2αL. Since αL = C(1− γ), then 0 = OU(αL) <
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HB(αL) ≤ OU(αH) < HB(αH). Depending on the relative position of a symmetric point

with respect to the HB and OU points of the low and high demand scenarios which

determine the second-stage equilibrium strategies, by Table 2.2, the marginal value of

initial inventory is

∂ΠR
i (x)

∂xi

∣∣∣∣
xi=x−i

=


1
2

(
αL
1−γ − xi

2+γ
1−γ2

)
+ C

2
− c if xi = x−i ∈ [0, HB(αL)],

C
2
− c if xi = x−i ∈ (HB(αL), OU(αH)),

1
2

(
αH
1−γ − xi

2+γ
1−γ2

)
− c if xi = x−i ∈ (OU(αH), HB(αH)].

Hence we have the following symmetric equilibrium candidates.

1. For xi = x−i ∈ [0, HB(αL)], setting the derivative to zero yields xR∗l :=
2(1−γ2)

2+γ
C (1− rc).

Note that xR∗l ∈ [0, HB(αL)] is equivalent to rc ∈
[
r′c2 , 1

]
, where r′c2 := 2γ2−γ−2

2(1+γ)(γ−2)
. As

in the proof of Proposition 2.2, we need to further identify when xR∗l is indeed a best

response while fixing her rival’s inventory at
2(1−γ2)

2+γ
(C − rc). After comparing with all

possible local optima and noting that r′c2 ≤ rc2 , we conclude that xR∗l is an equilibrium

if and only if rc2 ≤ rc ≤ 1 when rα ≥ 2. Under this equilibrium, firms clear inventory in

low demand and reorder in high demand.

2. For xi = x−i ∈ (OU(αH), HB(αH)], setting the derivative to zero yields xR∗h :=
1−γ2
2+γ

C(rα − 2rc). Note that xR∗h > OU(αH) is equivalent to rc < rc1 . Recall that the

no-reorder equilibrium is always smaller than HB(αH) and the profit functions are the

same for points along the diagonal between OU(αH) and HB(αH) for both R and N

games; thus it is implied that xR∗h < HB(αH). Again, we need to characterize when xR∗h
is indeed a best response. We can show that xR∗h is an equilibrium if and only if rc < rc1

when rα ≥ 2. Under this equilibrium, firms have leftovers in low demand and do not

reorder in high demand.

3. For xi = x−i ∈ (HB(αL), OU(αH)), the derivative of firm i’s expected profit is

constant. (i) If c 6= C/2, the derivative is nonzero, so no point in (HB(αL), OU(αH))

can be a symmetric equilibrium because an equilibrium has to be a local maximizer.

(ii) If c = C/2, then the derivative is zero, so every point in (HB(αL), OU(αH)) is an

equilibrium candidate. However, no such point can be a Pareto-dominant equilibrium.

This follows because c = C/2 implies rc2 < 1/2 = rc which implies by point 1. above that

xR∗l is a symmetric equilibrium. Noting that xR∗l < HB(αL), it follows that the expected

profit for xi = x−i = xR∗l strictly exceeds that for xi = x−i ∈ [HB(αL), OU(αH)].

4. Let xR∗o := OU(αH). The point xi = x−i = xR∗o is a symmetric equilibrium

candidate if and only if c ≤ C/2 and rc ≥ rc1 . This holds because for x−i = OU(αH),

ΠR
i (x) is not differentiable at xi = OU(αH) which is a local maximizer if the left derivative
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C/2 − c ≥ 0 and the right derivative 1
2

(
αH
1−γ − xi

2+γ
1−γ2

)
c is nonpositive, which holds if

and only if rc ≥ rc1 . Furthermore, we can show that xR∗o is a symmetric equilibrium if

rc ∈ [rc1 , rc2 ] when rα ≥ 2. Under this equilibrium, firms have leftovers in low demand

and reorder in high demand. Finally, xR∗o is not a Pareto-dominant equilibrium if rc ≥ rc2 :

In this case xR∗l is a symmetric equilibrium by point 1. above, and it is straightforward

to verify that the resulting expected profit exceeds that for xi = x−i = xR∗o .

Table 2.4: Sufficient and Necessary Conditions for Equilibria (1 ≤ rα < 2)

Equilibrium Candidate (1 ≤ rα < 2) Conditions Strategy in
Low

Demand

Strategy in
High

Demand

xR∗h := 1−γ2
2+γ

C(rα − 2rc) > HB(αL) 0 ≤ rc < rc4 or max{rc4 , rc5} ≤ rc ≤ rc7 leftover no reorder

xR∗p := 1−γ2
2(2+γ)

C(rα − 2rc + 1) ∈ (OU(αH), HB(αL)) max{0, rc4} ≤ rc ≤ rc5 and 0 ≤ rα ≤ r̂α clear no reorder

xR∗o := 1−γ
2−γC(rα − 1) = OU(αH) max{rc5 , rc7} < rc < rc6 clear no reorder

xR∗l :=
2(1−γ2)

2+γ
C(1− rc) ≤ OU(αH) rc6 ≤ rc ≤ 1 clear reorder

Second, we consider 1 < rα < 2, i.e., αL ≤ αH < 2αL. Then 0 = OU(αL) <

OU(αH) < HB(αL) < HB(αH). Following a similar procedure, we show that there

are four equilibrium candidates for rα ∈ (1, 2). Table 2.4 summarizes the sufficient and

necessary equilibrium conditions for each candidate, where r̂α is the rα-axis coordinate

of the intersection of the functions rc4 and rc5 .

The above arguments prove the existence of a symmetric equilibrium. The equilibrium

strategies for the cases (i)-(iii) in the statement of Proposition 2.3 are obtained by sum-

marizing points 1-4 for rα ≥ 2 and Table 2.4 for 1 < rα < 2, letting rc (rα, γ) = rc21{rα≥2},

rc (rα, γ) = rc61{1≤rα<2}, and rc (rα, γ) =
(
rc41{rc5≥rc4} + rc71{rc5≤rc7}

)
1{1≤rα<2}. (Note

that rc4 ≤ 0 for rα ≤ m∗∗(γ), in which case the conditions on rc in the first two rows in

Table 2.4 simplify.)

Proof of Proposition 2.4. We first prove the results for rα ≥ 2 and then extend to

1 ≤ rα < 2.

Table 2.5 shows that there are 6 possible no-reorder/reorder equilibrium combinations

for any given rc and rα such that rα ≥ 2. We need to quantify the expected profit

differences for all equilibrium combinations. By Proposition 2.2, we know that there is

at least one symmetric equilibrium in the N game for a given parameter pair (rα, rc). If

αL = C(1 − γ) and αH ≥ 2αL, we assume that both firms adopt the Pareto-dominant

xN∗l over xN∗h when two symmetric equilibria exist. Propositions 2.2 and 2.3 give us

the initial equilibrium ordering quantities. Referring to Table 2.2, we can also calculate
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the corresponding equilibrium prices and obtain the expected equilibrium profits. Table

2.6 lists the conditional revenue and cost in low and high scenarios for all equilibria.

Note that conditions 1.(a)-(c) hold whenever the firms with reorder flexibility are more

profitable than inflexible firms. We show that 1.(a)-(c) imply xR∗ < xN∗ < OU (αH).

Table 2.5: Equilibrium Pairs

rα ≥ 2 1 ≤ rα < 2

rc ∈ [0, rc1) [rc1 , rc3 ] [rc2 , 1] rc ∈ [0, rc4 ] [0, rc5 ] (rc5 , rc6) [rc6 , 1]

rc ≥ rα
2 −

m∗∗(γ)
2 (xN∗l , xR∗h ) (xN∗l , xR∗o ) (xN∗l , xR∗l ) (xN∗l , xR∗h ) (xN∗l , xR∗p ) (xN∗l , xR∗o ) (xN∗l , xR∗l )

rc <
rα
2 −

m∗∗(γ)
2 (xN∗h , xR∗h ) (xN∗h , xR∗o ) (xN∗h , xR∗l ) (xN∗h , xR∗h ) (xN∗h , xR∗p ) (xN∗h , xR∗o ) N/A

We compare the expected profits of each equilibrium combination as follows.

(i) {(rα, rc) | rc < rα/2−m∗∗(γ)/2 and rc2 ≤ rc ≤ 1}. In this case, firms choose xN∗h
in the N game and xR∗l in the R game. By Table 2.6, we have xR∗l generates more

expected profit than xN∗l if and only if (rα, rc) ∈ F1, where

F1 :=

{
(rα, rc) | rα > 2 and

γ3

2(1 + γ)(2− γ)2
rα +

1

2
< rc < rα/2−m∗∗(γ)/2 ≤ 1

}
.

The set F1 is nonempty if and only if 2 +m∗∗(γ) ≥ (γ+1)(2−γ)2

γ3
, i.e, γ ≤ 0.875. Note that

for nonempty F1, we have rc > rc3 , which implies that xR∗l is the unique symmetric R

game equilibrium candidate.

(ii) {(rα, rc) | rc ≥ rα/2−m∗∗(γ)/2 and rc2 ≤ rc ≤ 1}. In this case, firms choose xN∗l
in the N game and xR∗l in the R game. By Table 2.6, we have xN∗l generates more

profit than xR∗l if and only if (rα, rc) ∈ F2 := {(rα, rc) | 2 ≤ rα ≤ 2rc + m∗∗(γ) and 1 −
1
2
(rα − 1)(1 − 2

γ
√
γ(γ+1)

(γ+1)(2−γ)
) < rc ≤ 1}. The set F2 is nonempty if and only if γ ≤

1
3

(
(17 + 12

√
2)1/3 + (17 + 12

√
2)−1/3 − 1

)
≈ 0.849. Note that for nonempty F2, we have

rc > rc3 , which implies that xR∗l is the unique symmetric R game equilibrium.

(iii) {(rα, rc) | rc < rα/2−m∗∗(γ)/2 and rc1 ≤ rc ≤ rc3}. In this case, although xR∗l
may also be a reorder symmetric equilibrium, the analysis is similar to case (i). Thus here

we only compare the equilibrium combination xN∗h and xR∗o . Algebraically, xR∗o generates

more profit than xN∗h if and only if

(rα, rc) ∈
{

(rα, rc) | rα ≥ 2 and
γ − 2

γ
rc +

2 + γ

2γ
≤ rα ≤

2(γ + 1)(γ − 2)

γ2
rc +

2 + γ

γ2

}
,

which is exclusive of the validity set {(rα, rc) | rc < rα/2−m∗∗(γ)/2 and rc1 ≤ rc ≤ rc3}.
Thus, we conclude that the expected profit of xR∗o is no more than that of xN∗h in this
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Table 2.6: Revenue and Cost at Equilibrium for αH ≥ 2αL

Equilibrium
Conditional on the Low Scenario Conditional on the High Scenario

Revenue Cost Revenue Cost

R
game

xR∗l

(
αL
1−γ −

1
1−γx

R∗
l

)
xR∗l cxR∗l

αH+C
2−γ OU(αH) cxR∗l + C(OU(αH)− xR∗l )

xR∗o
αL
2−γHB(αL) cxR∗o

αH+C
2−γ OU(αH) cxR∗o

xR∗h
αL
2−γHB(αL) cxR∗h

(
αH
1−γ −

1
1−γx

R∗
h

)
xR∗h cxR∗h

N
game

xN∗l

(
αL
1−γ −

1
1−γx

N∗
l

)
xN∗l cxN∗l

(
αH
1−γ −

1
1−γx

N∗
l

)
xN∗l cxN∗l

xN∗h
αL
2−γHB(αL) cxN∗h

(
αH
1−γ −

1
1−γx

N∗
h

)
xN∗h cxN∗h

case.

(iv) {(rα, rc) | rc ≥ rα/2−m∗∗(γ)/2 and rc1 ≤ rc ≤ rc3}. In this case, although xR∗l
may also be a reorder symmetric equilibrium, the analysis is similar to case (ii). We here
only compare the equilibrium combination xN∗l and xR∗o . By Table 2.6, we calculate the
profit difference ΠN

i (xi = x−i = xN∗l )− ΠR
i (xi = x−i = xR∗o )

=

(
1− γ2

4(2 + γ)2
− 1

2

(
1− γ
2− γ

)2
)
r2α −

(
1− γ2

(2 + γ)2
− 1− γ

2− γ

)
rαrc +

1− γ2

(2 + γ)2
r2c

+

(
1− γ2

2(2 + γ)2
+

(
1− γ
2− γ

)2

− 1− γ
2(2− γ)

)
rα +

(
− 1− γ2

(2 + γ)2
− 1− γ

2− γ

)
rc +

1− γ2

4(2 + γ)2
− 1

2

1− γ
(2 + γ)2

.

Now we prove that this lower bound is nonnegative. Substituting rc = rα/2−m∗∗(γ)/2

into ΠN
i (xi = x−i = xN∗l ) − ΠR

i (xi = x−i = xR∗o ) and noticing 0 ≤ γ ≤ 1, we can show

the profit difference is nonnegative.

(v) {(rα, rc) | rc < rα/2−m∗∗(γ)/2 and 0 ≤ rc < rc1}. In this case, we compare the

equilibrium combination xN∗h and xR∗h . By Propositions 3 and 4, xR∗h = xN∗h .

(vi) {(rα, rc) | rc ≥ rα/2−m∗∗(γ)/2 and 0 ≤ rc < rc1}. In this case, we compare the

equilibrium combination xN∗l and xR∗h . Note that the profit of xR∗h has an identical

expression as that of xN∗h and we can verify that if αL = C(1 − γ) and αH ≥ 2αL, then

ΠN
i (xi = x−i = xN∗l ) ≥ ΠN

i (xi = x−i = xN∗h ) if and only if

(rα, rc) ∈
{

(rα, rc) |
1

2

(
rα − 1− 2γ

2− γ

√
γ

1 + γ

)
≤ rc ≤

1

2

(
rα − 1 +

2γ

2− γ

√
γ

1 + γ

)}
,

which contains the set of {(rα, rc) | rc ≥ rα/2−m∗∗(γ)/2 and 0 ≤ rc < rc1}. Thus in this

case, xN∗l generates more profit than xR∗h .

From (i) to (vi), we see that reorder flexibility benefits firms only in (i) and (ii), where

firms play only xR∗l in the R game but have different no-reorder equilibrium quantity

xN∗l and xN∗h dependent on (rα, rc). Moreover, xR∗l ≤ xN∗l if and only if (rα, rc) ∈
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{(rα, rc) | rc ≥ −rα/2 + 3/2} ⊃ F1∪F2. Thus, we conclude that xR∗l < xN∗l < OU(αH) <

xN∗h . The parameter subset where reorder flexibility benefits firms is F1 ∪ F2. This set is

nonempty if γ ≤ 0.849.

Second, let us consider the case where 1 ≤ rα < 2. (i) Whenever xR∗h and xR∗p are equi-

libria, the equilibrium outcomes of the R game are respectively equivalent to the outcome

of xN∗h and xN∗l in the N game. Thus, reorder flexibility has no value when the equilibrium

is either xR∗h or xR∗p . (ii) We explore the value of reorder flexibility when xR∗o is an equilib-

rium. The algebraic expression ΠN
i (xi = x−i = xN∗l )−ΠR

i (xi = x−i = xR∗o ) > 0 if and only

if (rα, rc) ∈
{

(rα, rc) | rα ≥ 1 and 1− 2+3γ
2(2−γ)

(rα − 1) < rc < 1− γ2+γ+2
2(2−γ)(1+γ)

(rα − 1)
}

. How-

ever, in this region xR∗o is not an equilibrium. Thus, reorder flexibility has no positive

value when xR∗o is an equilibrium. (iii) Consider xR∗l . From case (ii) of rα ≥ 2, we have

that reorder flexibility has a positive value for (rα, rc) ∈ F3, where

F3 :=

{
(rα, rc) | 1 ≤ rα < 2 and 1− 1

2
(rα − 1)

(
1− 2

γ
√
γ(γ + 1)

(γ + 1)(2− γ)

)
< rc ≤ 1

}
.

In sum, the reorder flexibility has a positive value only when xR∗l is an equilibrium and

(rα, rc) ∈ F1∪F2∪F3. Let rα(γ) := 1+
(

( γ3

4−3γ2
− 1)m∗∗(γ) + ( γ3

4−3γ2
+ 1)

)
1{0.849≤γ<0.875},

rα(γ) := (1 + γ)(2− γ)2/γ3 and

rc(γ, rα) :=

 1 +
(

γ
2−γ

√
γ

1+γ
− 1

2

)
(rα − 1) if rα(γ) ≤ rα < r̃α(γ),

γ3

2(1+γ)(2−γ)2
rα + 1

2
if r̃α(γ) ≤ rα < rα(γ),

where r̃α(γ) = 1 + (m∗∗(γ) + 1)/
(

2− γ
2−γ

√
γ

1+γ

)
. Moreover, the R game has the same

equilibrium as the N game if and only if rα ≤ rα(γ) = 2+γ
γ2

and rc ≤ rc(γ, rα) =

max{rc4 , rc5}1{1≤rα<2} + rc11{rα≥2}.

Proof of Proposition 2.5. We first solve the 2nd-stage pricing-ordering game given

the 1st-stage orders, and then determine the equilibrium orders in the 1st stage.

Define x̂I = (2+γ)α+γC
4−γ2 and x̂F = (2+γ)α−(2−γ2)C

4−γ2 . Following the proof of Lemma 2.1,

we can show that for any initial inventory vector x = (xI , xF ) where xI and xF represent

inflexible and flexible firms’ inventory, the price subgame of the U game has a unique

equilibrium as follows:

• for the inflexible firm, it prices to clear its inventory if xI ≤ xI (xF ) and prices to have

leftover otherwise;

• for the flexible firm, (i) if xF < xF (xI) then it reorders and prices to clear its inventory;

(ii) if xF (xI) ≤ xF ≤ xF (xI) then it prices to clear its inventory but does not reorder;
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Table 2.7: Notation in Proof of Proposition 2.5

y1 = 1/(2ρ9γ(1,−10, 26, 4,−100, 88, 104,−144, 0, 64))

y2 = ρ11γ(−2, 3, 21,−20,−101, 43, 252, 0,−304,

− 96, 128, 64), y′3 = (γ2 − γ − 2)2

y3 = ρ7γ(5, 12,−34,−74, 68, 136,−32,−64)y′3

y4 = ρ11γ(2, 16,−56,−126, 337, 441,−816,

− 848, 832, 816,−256,−256)

y5 = ρ9γ(1,−5,−4, 28, 32,−100,−64, 144, 32,−64)

y6 = ρ8γ(−9, 54,−62,−236, 284, 312,−432,−25, 192)

y7 = 4ρ14γ(0.5, 0,−33, 96, 136,−656,−388, 1808,

1048,−2528,−1792, , 1792, 1536,−512,−512)

y8 = 2
√

2γ3(γ2 + γ − 2)(γ2 − 2)(γ4 − 14γ2 + 16)

y9 = (γ − 1)(γ + 2)ρ12γ(1, 0,−40, 96, 280,−464,

− 904, 880, 1568,−768,−1408, 256, 512)

y10 = −2
3
2 γ2(γ2 − 2)(γ4 − 14γ2 + 16)ρ3γ(2,−1,−4, 4)

y11 = ρ13γ(−1,−48, 280,−464,−1416, 3152, 3144,

− 7056, 4064, 7744, 3072,−4352,−1024, 1024)

rc8 = (8(1− γ)
3
2 (y2r

2
α + y3rα + y4)

1
2 + y5rα + y6)y1

rc9 = ((3γ4 − 7γ2 + 4)
1
2 (y8rα + y10) + y9rα + y11)/y7

rc10 = (−2γ2 − γ + 4)(2(2− γ2))−1,

rc11 = (−γ(γ + 2)rα + ρ3γ(1,−13,−2, 16))×
(ρ3γ(2,−12,−4, 16))−1

rc12 = (1/ρ4γ(1, 1,−4,−2, 4))
(
(2γ4 − 8γ2 + 8)rα+

ρ4γ(2, 1,−6,−2, 4) + γ2
√

2(3γ4 − 7γ2 + 4) )

(iii) if xF > xF (xI) then it prices to have leftover and does not reorder;

where

xF (xI) =

−
γ

2−γ2xF + (1+γ)(α−C+γC)
2−γ2 if xI < x̂I

x̂F , if xI ≥ x̂I
, xF (xI) =

−
γ

2−γ2xF + (1+γ)α
2−γ2 if xI < HB(α)

HB(α) if xI ≥ HB(α)
,

and

xI(xF ) =


x̂I if xF ≤ x̂F

− γ
2−γ2xF + (1+γ)α

2−γ2 if x̂F < xF < HB(α).

HB(α) if xF ≥ HB(α)

Solving the 1st stage ordering game proceeds similarly as in the proofs of Propositions

2.2 and 2.3. We first identify all possible equilibrium candidates and then characterize

the conditions which ensure that a candidate is the best response. As reorder flexibility

is asymmetric in the U game, we need to establish these conditions both for the flexible

and for the inflexible firm. As the idea of the proof is essentially the same as Propositions

2.2 and 2.3, we omit the details of the rather complicated algebra and directly present

the results. Let us define řα as the rα-axis coordinate of the intersection of rc4 and rc7 .

Then the following holds for the three cases:

(i) If rc ≤ r˜c(rα, γ) := rc51{1≤rα<řα}+ rc71{řα≤rα<2}+ rc11{rα≥2}, then the U game has
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the same initial order equilibrium as the R and N games. In particular,

xU∗ =


xR∗h = xN∗h , if (rα, rc) ∈

{
(rα, rc)|0 ≤ rc < rc11{rα≥2} + rc41{1≤rα<2}

}
∪{(rα, rc)|řα ≤ rα < 2 and max{rc4 , rc5} ≤ rc < rc7} ;

xR∗p = xN∗l , if (rα, rc) ∈ {(rα, rc)|1 ≤ rα < r̂α and max{0, rc4} ≤ rc ≤ rr5} .

(ii) If r˜c(rα, γ) < rc < r̃c(rα, γ), there is a continuum of equilibria on the line y =

− γ
2−γ2x + (1−γ2)(rα−1)C

2−γ2 in the one-sided ε-neighbourhood (xl − ε, xl] of x where xl =
C
4

(−2(2− γ2)rc + (γ + 2)(1− γ) + γ).

(iii) If r̃c(rα, γ) := rc61{1≤rα<2}+max{rc8 , 1/2}1{rα≥2} ≤ rc ≤ 1, then the U game has

a unique asymmetric initial order equilibrium. At equilibrium, the flexible firm reorders

if the market is realized as high. In particular5,

xU∗ =



((xU∗I )cn, (x
U∗
F )cn), if (rα, rc) ∈

{
(rα, rc)|max{rc9 ,max{rc8 , 1/2}}1{rα≥2}

+rc61{1≤rα<2} ≤ rc < rc12
}

;

((xU∗I )ln, (x
U∗
F )ln), if (rα, rc) ∈ {(rα, rc)|1/2 ≤ rc < max{rc9 , rc10}} ;

((xU∗I )cz, (x
U∗
F )cz), if (rα, rc) ∈ {(rα, rc)|max{rc11 , rc12} ≤ rc ≤ 1} ;

((xU∗I )lz, (x
U∗
F )lz), otherwise;

where

(xA∗I )cn = 2(1−γ2)C
γ4−14γ2+16

(
γ3 − γ2 − γ + 2 + (−γ3 + 2γ2 + 2γ − 4)rc + (γ + 2)(1− γ)rα

)
;

(xU∗F )cn = (1−γ2)C
γ4−14γ2+16

(
γ3 − 13γ2 − 2γ + 16− (2γ3 − 12γ2 − 4γ + 16)rc − (γ2 + 2γ)(1− γ)rα

)
;

(xU∗I )cz = (1−γ2)C
2(4−3γ2)

(
(1 + γ)(2− γ)− 2(2− γ2)rc + (γ + 2)(1− γ)rα

)
;

(xU∗F )lz = C
4

(
−2γ2 − γ + 4 + 2(γ2 − 2)rc

)
; (xU∗F )cz = (xU∗F )lz = 0;

(xU∗I )ln = (xU∗I )lz = C
4

(
γ + 2(γ2 − 2)rc + (γ + 2)(1− γ)rα

)
.

The proofs of xU∗F > xN∗ for case (ii) and xU∗F < xR∗ < xN∗ for case (iii) involve lengthy

but straightforward algebra and are therefore omitted.

Proof of Proposition 2.6. For a given (rα, rc) in this region, the N , R, and U games

each have a unique equilibrium. The proof proceeds by showing at least one of the in-

equalities ΠU∗
F < ΠN∗ and ΠU∗

I < ΠR∗ holds. Table 2.9 summarizes under what condition

which firm would deviate from the asymmetric flexibility strategies (N,R).

5The first subscript c or l represents the inflexible firm’s strategy, c for clear-out and l for left-over.
The second subscript represents the flexible firm’s strategy, n for non-zero and z for zero.
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Table 2.8: Notation in Proof of Proposition 2.6

z1 = ρ11γ(1, 4,−44,−192, 168, 1280, 344,−3008,

− 2000, 2944, 2560,−1024,−1024)

z2 = ρ12γ(−3,−6, 58, 188,−116,−1104,−528, 2592,

2128,−2688,−2560, 1024, 1024)

z3 = ρ7γ(−1,−2, 16, 32,−44,−88, 32, 64)

z4 = ρ7γ(4,−8,−9, 64, 6,−120, 0, 64)

z5 =
(
(1− γ)(γ − 2)(γ4 − γ3 + 16γ + 16)γ3

)−1
z6 = (1− γ)(2− γ)(2− γ2)ρ5γ(1, 2, 8,−8,−48,−32)

z7 = (1− γ)(2− γ)(3γ2 − 4)(γ2 − 2γ − 4)(γ + 2)2

z8 = 4(1− γ2)(4− γ2)2(3γ2 − 4)2(2− γ2)2

z9 = (γ + 2)2(2− γ2)2ρ10γ(1,−4,−3, 48,−34,−132,

124, 144,−144,−64, 64)

z10 =
(
2γ4(γ2 − 2)(γ + 2)2(1− γ)2

)−1

z11 = 4(γ − 1)(γ − 2)2(2− γ2)2(γ + 2)3

z12 = 2ρ9γ(1, 9, 4,−66,−44, 192, 96,−28,−26, 27)

z13 = 8(1− γ)2(4− γ2)2(γ2 − 2)3ρ8γ(1, 4, 4,−64,

− 16, 256, 192,−256,−256)

z14 = 8(1− γ)2(4− γ2)2(γ2 − 2)2ρ10γ(2, 5, 8,

− 88,−64, 400, 256,−768,−640, 512, 512)

z15 = ρ20γ(8,−8,−70,−148, 310, 3568,−3180,

− 26448, 26608, 102144,−116096,−239104,

289280, 364544,−442368,−368640, 425984,

229376,−245760,−65536, 65536)

χcn = 1 + 2z1(rc − 1)/(z2 − γz3
√

2γz4)

χlz = z5

(
z6rc + z7 − 4

√
(r2α − rα)z8 + z9

)
χln = z10

(
z11rc + z12 −

√
z13r2c − z14rc + z15

)

Table 2.9: Deviating Firm in Asymmetric Reorder Flexibility Endowment (N,R)

Equil. Condition Deviating Firm Equil. Condition Deviating Firm

xU∗cz any (rα, rc) inflexible (ΠU∗
I < ΠR∗) xU∗lz

rα < χlz(rc, λ) inflexible (ΠU∗
I < ΠR∗)

rα > χlz(rc, λ) flexible (ΠU∗
F < ΠN∗)

xU∗cn
rα < χcn(rc, λ) inflexible (ΠU∗

I < ΠR∗)
xU∗ln

rα < χln(rc, λ) inflexible (ΠU∗
I < ΠR∗)

rα > χcn(rc, λ) flexible (ΠU∗
F < ΠN∗) rα > χln(rc, λ) flexible (ΠU∗

F < ΠN∗)
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Chapter 3

Efficient Information Heterogeneity

in a Queue

3.1 Introduction

In today’s service industries, information about delays is ubiquitous. The border-crossing

waiting time between US and Canada is posted online and updated in almost real time.

Information about traffic jams on major roads is distributed in real time on radio, tele-

vision and Internet. Thanks to traffic-information sharing apps like Waze, real-time

information about traffic may also be available even for roads that are not covered by

governmental-funded traffic detection and monitoring.

Regardless of how widely available information about real-time delays may be, a large

fraction of customers are still uninformed. First, not all people are equipped with mobile

devices that may make information acquisition almost effortless. Second, people may

simply overlook up-to-minute information about delays before hitting the road. In an

online poll with about 20,000 participants who were asked, “How do you most often check

traffic information before going out?”, 47% answered “I don’t check”; the rest checked

various sources such as TV, radio, computer, and mobile devices.1 It may be hard to as-

certain the exact causes of information ignorance, which may be numerous. For example,

some people may simply be over-confident in their luck. Such information ignorance may

also manifest itself as that people sometimes check information and sometimes do not.

Last, there could be other reasons leading to information heterogeneity. For example,

small service providers may not afford to invest in technology for tracking and reporting

how crowded they are. In this case, only drop-in customers can observe the queue, and

1The poll result can be found at http://www.gasbuddy.com/GB_Past_Polls.aspx?poll_id=720.
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many potential customers are not.

Thus it is evident that many of today’s service environments are characterized by

heterogeneity in their customers’ knowledge about delays: some are informed about the

real-time delay, whereas others are not but have had past experiences with the congestion

levels. It is essential to understand the interaction among customers with information

heterogeneity in order to answer the question: How do system throughput and social wel-

fare change, as the real-time delay information becomes more prevalent due to advances

in information technology?

On the one hand, Chen and Frank (2004) show that delay information is a double-

edged sword for system throughput by comparing full and no real-time delay information.

When the system load is low, customers might be turned away with real-time informa-

tion, but otherwise might stay if uninformed. Hence, the throughput of an observable

queueing system only exceeds that of the unobservable counterpart when the system load

is high. In a more common situation where some, but not all, customers are informed,

would the system throughput outperform its counterparts in the two extreme information

structures, i.e., full and no information?

On the other hand, Hassin (1986) argues that real-time congestion information can

effectively improve social welfare, again by comparing full and no real-time delay in-

formation. The intuition is that it helps better match capacity with customer demand

intertemporally: customers never join a long queue or balk from a short one. This ratio-

nale is consistent with the ubiquity of congestion information in today’s public service

industries. However, as we argued, it might be too ideal to expect that all customers

have access to delay information even if it is readily available. More essentially, does the

system inevitably suffer efficiency loss due to the presence of uninformed customers?

Service congestion is often modeled and studied by applying queueing theory. In that

literature, the comparison between observable and unobservable queues has been well

studied. For examples, an influential work Hassin (1986) and a follow-up paper Chen

and Frank (2004) consider a single-server queue where customers arrive according to a

Poisson process and service takes an exponential time. The authors of the latter paper

show that there exists a critical level of the implied utilization (i.e., the potential arrival

rate divided by the service rate) such that, if the implied utilization is beyond the critical

level (which can be negative), the system throughput is higher in the observable setting

than in the unobservable setting; and if the implied utilization is lower than the critical

level, the reverse is the case2. However, it is unclear how one can apply the results

obtained by comparing two extreme scenarios of information homogeneity – full and no

2If the critical level is negative, this case is moot.
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information – to the very common situation where some customers are informed and the

rest are not.

To answer those questions, we study a single-server queue as in Hassin (1986) but

with a middle ground by assuming a mix of two streams of customer arrivals who are

different in their information structures. Specifically, the server posts information on the

actual queue length in real time. One stream of customers, which we call informed, makes

the decision to join or balk on the basis of the real-time information about delays. The

other stream, which we call uninformed, do not have access to this real-time information

and base their join-or-balk decision on their past experiences of congestion levels. We

assume the fraction of informed customers, which we also refer to as information level,

is exogenous, and we study comparative statics with respect to the information level,

namely the influence of an larger informed fraction (i.e., growing information prevalence)

on system performances such as throughput and social welfare.

Given the difference in the delay information they possess, the two streams of cus-

tomers have totally different self-interested joining behavior. Informed customers use a

threshold policy: if the queue is observed to be shorter than a particular threshold, they

join it; otherwise, they balk. Uninformed customers, on the contrary, are only aware of

the expected waiting time through their past experiences and randomize their decisions

between joining and balking. Although informed customers use the same state-dependent

threshold strategy as if they were in an observable queue (cf. Naor 1969), the presence of

uninformed customers undoubtedly influences the probability that an informed customer

will join the queue. On the one hand, this interaction is not captured by either observable

or unobservable models. On the other hand, our results reveal that service providers who

ignore this interaction between the two segments may miss the opportunity to achieve

better system performance measures. In particular, we show that unless the customer

volume is extremely low, it is possible to improve either throughput or social welfare

when only a fraction of customers are informed. Moreover, these system performance

measures depend crucially on the equilibrium joining behavior of uninformed customers.

We show that the ubiquity of delay information may have a positive or negative

impact on the system throughput. In particular, we prove that there are two critical

levels of offered loads. If the offered load is above (or below) the higher (or lower) one,

the throughput always increases (or decreases) in the information level. These results are

consistent with the comparison of the full- and no-information models in Chen and Frank

(2004). However, we also show that if the offered load falls in the intermediate range

between the two critical levels, the throughput is always unimodal in the information

level. In addition, the throughput reaches its maximum at the information level in which
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all uninformed customers are about to adopt an always-join strategy. This finding implies

that treating all customers equally either as informed or as uninformed may fail to realize

the potential value of effective information control.

Notice that system throughput would steadily accumulate at the service rate as long

as the server is not idle. Thus, maximizing throughput is equivalent to minimizing system

idleness. Idleness stems from either inadequate service requests (namely, the arrival rate

is low), which we call the mean effect, or an inter-temporal mismatch between capacity

and demand, which we call the variability effect. Although information prevalence can

counteract these two effects in some situations, it may also fail to do so. If the arrival rate

is large relative to the service rate, the mean effect is of little concern and the variability

effect can be mitigated as more customers become informed and join the line immediately

when it is short. In contrast, if the offered load is not high, the server is more likely to

experience too few service requests. Thus, it is essential to improve the average joining

probability of each customer. Although information prevalence marginally decreases each

informed customer’s probability of joining, it dramatically motivates the uninformed ones

under a relatively low customer load, due to a shorter expected delay. As a result, the

net effect is that the average joining probability of the entire customer pool increases

in the information level. However, if all uninformed customers have already adopted an

always-join strategy, they cannot be further stimulated. Consequently, system through-

put starts to suffer from a further increase in the information level, which in fact turns

away customers who would join the line if they could not see its length. In particular,

if the offered load is so low that all customers are able to receive positive utility even

without real-time information, any marginal increase in the information level only hurts

the throughput.

Contrary to the conventional wisdom that congestion information always improves

social welfare, we further demonstrate that social welfare is unimodal in the information

level when the system experiences a sufficiently high offered load (only when the offered

load is relatively low does information prevalence always benefit social welfare). This

is because growing information prevalence has both positive and negative impacts on

social welfare. On the positive side, if the system congestion is visible to customers,

system capacity can be more efficiently matched with service requests inter-temporally

because potential informed customers seek service only when the queue is short enough

to yield positive utilities. However, informed customers’ self-interested joining behavior

may overload the system, especially when the service requests are overwhelming. The

overall effect on social welfare depends on the interactions between the informed and

uninformed customer segments. Under a large offered load, uninformed customers expect
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a long line and join the queue with a very low probability. This disincentive helps mitigate

the congestion. Furthermore, as the fraction, hence the number, of informed customers

increases, those desirable positions with only a few people waiting ahead are more likely

to be taken instantaneously by informed customers. Therefore, the queue has a tendency

to grow longer in the information level. In response, the remaining uninformed customers

would be even less likely to join the line. The declining incentive for uninformed customers

who earn zero utilities in turn frees up the capacity to serve more informed customers,

who contribute positive utilities to welfare. Nonetheless, when a large proportion of a

high volume of customers are informed, uninformed individuals eventually lose interest

in the service and all choose to balk. Without uninformed customers’ concession, the

system suffers from escalating externality inflicted by the increasing number of informed

customers and hence social welfare deteriorates.

Our results highlight the fact that some degree of information heterogeneity in real-

time delay information in the population can lead to more efficient outcomes than in-

formation homogeneity in terms of system throughput or social welfare. The presence of

uninformed customers or their behavior does not necessarily harm the system. In fact,

it improves the system throughput when the system experiences low offered loads and

increases social welfare when the system experiences high offered loads.

To evaluate the effect of information heterogeneity, we study comparative statics by

assuming an exogenous fraction of uninformed customers. However, we caution that all

customers will choose to be informed if they are fully rational and there is no cost of

being informed. Assuming all customers are rational, we thus discuss how to achieve a

desirable degree of information heterogeneity by charging an information access fee. Our

results from the base model imply the potential value of intentionally concealing delay

information from certain customers. For instance, call centers may consider making delay

announcements only to premium customers. In that situation, it is also plausible that

informed customers such as premium ones, and uninformed customers such as regular

ones, may value the service differently and incur different unit delay costs. We thus

examine an extension with heterogeneous customer characteristics in service reward and

delay cost. We find that system throughput and welfare can still be unimodal in the

information level.

Literature Review

Literature in the influence of delay information on customer behavior dates back to

Naor (1969). The author argues that in an observable service system, customer self-
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interested joining decisions, which ignore the negative externality on later arrivals, over-

load the system and result in a deviation from social optimality. Hassin and Haviv (2003)

comprehensively summarize various extensions to Naor (1969). Hassin (1986) studies a

revenue-maximizing server who has the option of completely suppressing the information

on real-time queue length. The author shows that when a revenue maximizer prefers to

reveal the queue length, so does a social planner.

Customers may sometimes not be able to observe system states directly but have

to rely on delayed information announced by service providers. One example is delay

announcements in call centers. Whitt (1999) argues that informing customers about an-

ticipated delays can effectively reduce customer abandonment. Guo and Zipkin (2007)

study the effects of delaying information with different degrees of precision: no informa-

tion, the queue length, and the exact waiting time. They find that exact delay information

may either improve or hurt social welfare because all customers are not equally patient.

This finding is further strengthened by Guo and Zipkin (2009). These papers on de-

lay announcement all implicitly assume that service providers offer truthful information.

However, customers are often unable to verify the announced congestion information.

Allon et al. (2011) model customer strategic response to provider’s unverifiable delay

information and characterize equilibrium signaling languages that emerge between the

service provider and her customers. Allon and Bassamboo (2011) further reveal that

delaying the announcements about waiting times can make the announced information

more credible.

There is an emerging stream of literature on behavioral queues. Plambeck and Wang

(2013) show how customers’ lack of self-control and naivete affect optimal pricing and

scheduling in a service system. Huang et al. (2013) study canonical service models

with boundedly rational customers. They find that for observable queues with endo-

genized pricing, bounded rationality results in a loss of revenue and welfare. Cui and

Veeraraghavan (2014) study a queue that serves a pool of customers who may have arbi-

trarily misinformed beliefs about the service rate. The authors show that revealing the

service information to consumers can benefit revenues but may hurt individual welfare

or social welfare. Another stream of research in this behavioral queue literature studies

herding in queues. Veeraraghavan and Debo (2009, 2011) and Debo and Veeraraghavan

(2014) study customer inferences about service quality through observation of the length

of waiting lines, which may lead to herding in queues.

All the papers referred to above assume that customer perceptions of delay informa-

tion are homogeneous: i.e., either no one has access to the information or all receive

the same types of information. However, as we argued before, it may be unrealistic to
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assume that all customers are aware of system congestion even though such information

is available through many channels. In contrast to previous work, we consider customer

heterogeneous perceptions of delay information; i.e., only a fraction of customers can

obtain information about the real-time queue length. Our work focuses on the interac-

tion between informed and uninformed customers and the resulting system performance

measures.

Most relevant to our work is Hassin and Roet-Green (2013), which models rational

customer decisions among three actions: join, balk, or incur a hassle cost to inspect the

queue length before making a join-or-balk decision. The authors prove the existence of

a customer equilibrium strategy, which is effectively a randomization of the three possi-

ble actions. The authors show that the service provider can have a higher throughput

if customers must incur a hassle cost to inspecting the queue so that only a fraction

of customers are informed of the queue length. They show that social welfare is maxi-

mized when the inspection is costless and thus all customers are informed. In contrast,

we show that our base model can be adapted to account for the situation in which the

service provider charges an information fee (considered as a payment transfer between

the provider and customers) and the customers are completely rational in deciding be-

tween paying an information fee to be informed or not paying and staying uninformed.

Therefore, results from our base model imply that charging an information fee can im-

prove system throughput or social welfare. Our extension to rationalizing customers’

uninformed behavior with an information fee may provide an alternative way to prove

the equilibrium existence result in Hassin and Roet-Green (2013). In addition, for our

setting, we identify the behavior of uninformed customers as the driving force of various

results and provide explanations.

3.2 Model Setup

A single-server facility expects a stream of customers who arrive one at a time according to

a Poisson process with rate Λ. Customers are risk-neutral and are served on a first-come-

first-served basis. The service time of each customer is independent and exponentially

distributed with mean 1/µ. We denote ρ ≡ Λ/µ as the offered load of the system. We

assume that the admission fee to the facility is an irrelevant factor in a customer’s join-

or-balk decision and is thus scaled to zero; as a result, social welfare does not involve

the service provider’s profit. Such services may include boarder crossings, driving on
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highways, and rides at Disney World3. Upon completion of the service, a customer

receives a reward R. During the sojourn time in the system, a linear waiting cost with

marginal rate c is incurred. We further assume that the service reward is sufficient

to offset the waiting cost when there is no line upon arrival, i.e., Rµ ≥ c. The same

assumption is commonly made in the literature (e.g., Naor 1969, Hassin 1986). If a

customer chooses to balk, she receives zero utility. Moreover, we assume that customers

do not renege.

There are two streams of customers. The informed stream checks the real-time infor-

mation on the queue length, Q(t), and takes that into account when making an individual

join-or-balk decision. The other uninformed stream ignores or is not able to obtain the

real-time information. Thus the uninformed customers have to rely on their expectations

of queue lengths, based on their past experiences with the congestion levels, in deciding

whether to join or balk. The fraction of informed customers in the whole population is

denoted by an exogenous parameter γ ∈ [0, 1], which measures the real-time information

level in the society. We denote by λI and λU the arrival rates of informed and uninformed

customer streams respectively. Then, we have

λI ≡ γΛ and λU ≡ (1− γ)Λ.

It is natural to assume that customers in each stream have their private knowledge of
their own service reward R and unit delay cost c, which are homogeneous for both streams

in the base model. For equilibrium analysis, we assume that all system parameters are

known to the uninformed customers.4 It may be restrictive to assume that uninformed

customers know the fraction of informed customers γ. In Section 3.5, we relax this

particular informational requirement by endogenizing the information level as an outcome

of rational customers’ utility maximization given an information fee. Some recent papers

3Although a customer needs to buy a day pass, there is no additional charge for any ride or attraction.
Therefore, price is not likely to be a factor when a customer chooses a ride.

4To reach a system equilibrium, the minimum information assumption for uninformed customers may
be that they only know their own service reward R and delay sensitivity c, but they react actively to their
past experiences with the system. The segment of uninformed customers, as a whole, would increase
(decrease) their joining probability if cE(W ) < (>)R, where E(W ) is the expected delay from their past
experiences over a short term. Because the expected wait time is increasing in the joining probability
of uninformed customers (see Lemma 3.1), through a dynamic process of interacting with the system,
uninformed customers would reach a unique equilibrium over time where they have no incentive to
deviate from their choice of joining probability. No doubt this minimum information structure requires
customers’ repeated interactions with the system, which may be reasonable for settings such as frequent
highway commuters who respond to past traffic conditions. In other settings, to reach an equilibrium,
we do require the uninformed to know all system parameters, i.e., the arrival rate Λ, service rate µ, the
fraction of the informed customers γ, and the informed customers’ service reward and delay sensitivity,
beyond their private knowledge of their own.
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also consider relaxation of those restrictive informational requirements; see, e.g., Debo

and Veeraraghavan (2014); Cui and Veeraraghavan (2014).

3.3 Join-or-Balk Decisions

We next discuss how the two customer streams make their joining decisions in equilibrium.

Since the two streams possess different levels of information about queue length, they

have different strategies.

3.3.1 State-Dependent Decisions of Informed Customers

Informed customers have private knowledge of their own service reward and sensitivity to

delays, and they make contingent decisions according to the system state. Upon arrival,

knowing that i customers are in the system, including the one receiving service if any, an

informed customer joins the queue if and only if the expected net value R−c(i+1)/µ ≥ 0,

i.e., i + 1 ≤ Rµ/c. For notation simplicity, bxc denotes the largest integer that is less

than or equal to x, and 〈x〉 ≡ x− bxc ∈ [0, 1) denotes the fractional part of real number

x. Therefore, there is a threshold

n ≡ bνc , where ν ≡ Rµ

c
≥ 1,

such that an informed customer arriving at time t joins the queue if and only if she

observes Q(t) < n, and otherwise balks. In other words, n− 1 is the maximum queue

length beyond which joining the queue would lead to negative utility for an informed

customer. Our model of informed customer behavior is in the same vein as those in

observable queues (e.g., Naor 1969, Hassin 1986).

3.3.2 Equilibrium Mixed Strategies of Uninformed Customers

The uninformed customers are unaware of the real-time queue length. Specifically, unin-

formed customers’ strategy can be described by a fraction q ∈ [0, 1]. We can interpret q

as either the proportion of all uninformed customers who seek service or the probability

that each uninformed customer joins the queue. Let pi(q) denote the probability that

there are i customers waiting in the queue in the steady state when the joining probability

of uninformed customers is q. The collective behavior of the informed and uninformed
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streams jointly determines the following balance equations of the process:

(λI + qλU)pi(q) = µ · pi+1(q) if 0 ≤ i < n, (3.1)

qλU · pi(q) = µ · pi+1(q) if i ≥ n. (3.2)

Thus, the probability density function of the queue length can be written as:

pi(q) =

 (ρC(q))
i p0(q) if 0 ≤ i < n,

(ρC(q))
n (ρU(q))

i−n p0(q) if i ≥ n,
(3.3)

where, for convenience of notation,

ρC(q) ≡
λI + qλU

µ
and ρU(q) ≡

qλU

µ
. (3.4)

(We may suppress the dependence of ρC(q) and ρU(q) on q to further simplify the notation.)

Using
∑∞

i=0 pi(q) = 1, we can derive the idle probability

p0(q) =

(
n−1∑
i=0

(ρC)
i +

(ρC)
n

1− ρU

)−1

=

(
1− (ρC)

n

1− ρC

+
(ρC)

n

1− ρU

)−1

. (3.5)

Therefore, the expected sojourn time W in the steady state is

W (q) =
∞∑
i=0

i+1
µ
pi(q) = p0(q)

µ

[
1−(ρC)

n

1−ρC + ρC
(1−ρC)2

+ (ρC)
n
(

1−n
1−ρC −

1
(1−ρC)2

+ 1
(1−ρU)2

+ n
1−ρU

)]
.

(3.6)

Then, uninformed customers with a joining strategy q receive utility R − cW (q) on

average. If there were only uninformed customers, it is obvious that ceteris paribus,

the expected sojourn time would increase as q becomes larger. However, we have two

customer streams. As uninformed customers join the line more frequently, informed

customers are less likely to join, and that alleviates the congestion. The next lemma

confirms that the former effect dominates the latter.

Lemma 3.1 For any given γ ∈ [0, 1), the queue length Q(q) in the steady state is stochas-

tically increasing in q and thus the expected sojourn time W (q) is strictly increasing in

q.

Following Hassin and Haviv (2003), we can determine the unique equilibrium joining

probability of uninformed customers by the strict monotonicity of W (q). Specifically,

let q∗ ∈ [0, 1] be the equilibrium joining probability of the uninformed customers. If
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R − cW (0) ≤ 0, an uninformed customer earns a non-positive utility even if no other

uninformed ones join. Therefore, q∗ = 0. If R − cW (1) ≥ 0, uninformed customers

receive non-negative net benefits even if they all join. Therefore, q∗ = 1. Otherwise, a

mixed strategy will be used. Assume that all uninformed customers join the queue with

a probability 0 < q < 1 and R − cW (q) > 0. Since each customer is an infinitesimal

entity, an uninformed customer can unilaterally improve her own utility by joining more

frequently. Therefore, it must be that R − cW (q∗) = 0 in equilibrium. The next propo-

sition summarizes the equilibrium joining strategy by uninformed customers. To draw a

parallel between the joining strategies of informed and uninformed customers, we present

the results in terms of the expected queue length E[Q(q)].

Proposition 3.2 Fix γ ∈ [0, 1). There exists a unique equilibrium joining strategy q∗

for uninformed customers.

(i) (Always Balk: No Participation) q∗ = 0 if and only if E[Q(0)] ≥ ν, i.e., cW (0) ≥ R.

(ii) (Always Join: Full Participation) q∗ = 1 if and only if E[Q(1)] ≤ ν, i.e., cW (1) ≤
R.

(iii) (Randomize between Balking and Joining: Partial Participation) q∗ ∈ (0, 1) must

satisfy E[Q(q∗)] = ν, i.e., cW (q∗) = R, if and only if E[Q(0)] < ν < E[Q(1)], i.e.,

cW (0) < R < cW (1).

From the above proposition, we can further analytically identify the system primitives,

under which the uninformed customers always balk or join in equilibrium, by exploring

the condition of cW (0) ≥ R or cW (1) ≤ R respectively. In the rest of the primitive

space, uninformed customers randomize their decisions between joining and balking in

equilibrium.

Corollary 3.3 (No Participation) All uninformed customers always balk at the queue

in equilibrium, i.e., q∗ = 0, if and only if 1 ≥ γ ≥ γ∗0(ρ, ν) ≡ y∗(ν)
ρ
, where y∗(ν) ≥ 0 is

the unique solution to n+ 1 + 1
1−y −

n+1
1−yn+1 = ν.5

Corollary 3.4 (Full Participation) All uninformed customers always join the queue

in equilibrium; i.e., q∗ = 1, if and only if

1 ≥ γ ≥ γ∗1(ρ, ν) ≡ 1− 1

ρ
+

2

ρ

(
〈ν〉+

√
〈ν〉2 + 4L(ρ, ν)

)−1

,

5The cut-off point γ∗0 (ρ, ν) can be shown to be always non-negative but can be larger or smaller than
1. If γ∗0 (ρ, ν) > 1, the case q∗ = 0 is moot; i.e., there exists no γ ∈ [0, 1] such that q∗ = 0.
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where L(ρ, ν) ≡ 〈ν〉(ρ−1)ρn+ν−νρ+ρn−1
(1−ρ)2ρn

=
ν−〈ν〉ρn−

∑n−1
i=0 ρ

i

(1−ρ)ρn
≥ 0 and 〈v〉 ≡ v − n.6

Corollaries 3.3 and 3.4 show that uninformed customers would always join or balk

when the information level is beyond a certain threshold. Nevertheless, depending on

the system offered load, only one threshold, γ∗0(ρ, ν) or γ∗1(ρ, ν), can exist in the range

of [0, 1] for a given set of system primitives. The next proposition describes how the

offered load ρ and information level γ jointly determine the equilibrium joining behavior

of uninformed customers.

Theorem 3.5 (Equilibrium Strategy of Uninformed Customers) For given ρ

and ν, define ρ ≡ 1− 1/ν and ρ ≡ y∗(ν) respectively. The equilibrium joining probability

q∗ of uninformed customers depends on ρ and γ in the following way:

(i) (Always Full Participation) If 0 ≤ ρ < ρ, q∗ = 1 for all 0 ≤ γ ≤ 1.

(ii) (Partial to Full Participation) If ρ ≤ ρ ≤ ρ, q∗ 6= 0 for all 0 ≤ γ ≤ 1. In

particular, 0 < q∗ < 1 for 0 ≤ γ < γ∗1(ρ, ν) and q∗ = 1 for γ∗1(ρ, ν) ≤ γ ≤ 1, where

γ∗1(ρ, ν) ∈ [0, 1].

(iii) (Partial to No Participation) If ρ > ρ, q∗ 6= 1 for all 0 ≤ γ ≤ 1. In particular, 0 <

q∗ < 1 for 0 ≤ γ < γ∗0(ρ, ν) and q∗ = 0 for γ∗0(ρ, ν) ≤ γ ≤ 1, where γ∗0(ρ, ν) ∈ [0, 1].

We next use Figure 3.1 to illustrate the results in Proposition 3.5. The vertical

axis represents the system offered load ρ = Λ/µ, and the horizontal axis is ν = Rµ/c,

which ranges from n inclusive to n + 1 exclusive. The lower dashed and upper solid

curves correspond to the two thresholds ρ and ρ respectively. Moreover, it can be shown

that the solid curve always stays above the dashed one and ρ approaches infinity when ν

tends to n+1. The two offered load thresholds ρ(ν) and ρ(ν) divide uninformed customer

equilibrium strategies into three types in the primitive space of (ρ, ν). We discuss each

as follows.

In the area below ρ, the offered load is extremely low and the expected sojourn

time for uninformed customers is very short. Even if no one observes the queue length,

namely γ = 0, all uninformed customers choose to join the queue, i.e., q∗ = 1. As the

information level γ increases by an infinitesimal amount, a small proportion of customers

change from uninformed to informed. These converted customers now join the queue only

if they observe that Q(t) < n, rather than definitely as before. The system congestion is

6The cut-off point γ∗1 (ρ, ν) can be negative. If γ∗1 (ρ, ν) < 0, then the case q∗ = 1 holds for all γ ∈ [0, 1].
Moreover, γ∗1(ρ, ν) can be larger than 1. If γ∗1(ρ, ν) > 1, the case q∗ = 1 is moot, i.e., there exists no
γ ∈ [0, 1] such that q∗ = 1.
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Figure 3.1: Illustration for Equilibrium Behavior of Uninformed Customers

hence slightly alleviated. The reduced delay, on the one hand, reinforces the remaining

uninformed customers’ incentives to join, with the result that they still all join the queue

as the information level γ grows. This also intuitively justifies the validity of Corollary

3.4. On the other hand, the slightly reduced congestion also increases the probability

that informed customers will see a short queue. Therefore, the chance of an informed

customer joining the line slowly increases in γ when q∗ = 1. Figure 3.2(a) depicts q∗ as

a function of γ in such a scenario when ρ = Λ/µ = 0.5, the service reward R = 4, and

marginal waiting cost c = 1. In this case, uninformed customers always join the queue in

equilibrium regardless of the information level as shown in Theorem 3.5(i) and informed

customers’ probability of joining rises slightly.

Figure 3.2: Joining Probabilities of Informed and Uninformed Customers (µ =
1, R = 4, and c = 1)
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(a) ρ = Λ/µ = 0.5
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(b) ρ = Λ/µ = 1.1
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(c) ρ = Λ/µ = 2.3

As the offered load gradually increases to intermediate levels between the dashed and

solid lines in Figure 3.1, a large fraction or all of the uninformed customers join the

queue in equilibrium depending on the information level γ (see Theorem 3.5(ii)). In this

case, the total customer volume is relatively modest relative to the service speed. Even

if a considerable number of customers are informed, e.g., γ → 1−, the expected sojourn

time for uninformed customers is still endurable, since the absolute number of informed

customers is not very large and they enter the queue only when it is short. Therefore,
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uninformed customers line up regardless. For instance, in Figure 3.2(b), q∗ = 1 if γ is

close to 1 when the offered load ρ equals 1.1. However, as γ decreases, e.g., γ → 0+, the

number of uninformed customers rises. Every uninformed customer who is risk-neutral

has to seek service less often to cope with the increasing negative externalities from her

uninformed peers who join blindly at a certain probability. This thus reduces uninformed

customers’ incentive to join the line. Moreover, because uninformed customers join less

as γ declines, the queue is more likely to be shorter than n, and that increases the

probability that informed customers will join. As the information level γ approaches 0,

uninformed customers are discouraged from lining up but informed customers are slightly

encouraged, compared to when q∗ = 1. Visually, these facts correspond to the increasing

solid curve and declining dashed curve respectively up to γ = 0.51 in Figure 3.2(b).

Beyond γ = 0.51, the pattern is similar to Figure 3.2(a).

While the offered load rises to excessive levels, i.e., above the solid curve in Figure 3.1,

only a small fraction or none of the uninformed customers join the queue in equilibrium

depending on the information level γ (see Theorem 3.5(iii)). In this case, the system

confronts enormous customer volumes. With no knowledge of the real queue length,

uninformed customers expect a long line and have very little incentive to join. With such

a large customer volume, the advantage of real-time congestion is clear: any available

spot with fewer than n people ahead will be taken quickly. As the number of informed

customers increases, this effect become more salient and the queue becomes even longer.

Informed customers observe a short queue less frequently and have to balk more often as

γ increases to 1. For uninformed customers, the incentive to join the line diminishes in

γ until it vanishes completely. For the same reason, a further increment in the number

of informed customers beyond the vanishing point where q∗ hits 0 only causes those

appealing spots to be occupied even faster and the queue to be even longer. Hence, q∗

remain at 0 after the information level exceeds γ∗0(ρ, ν) as shown in Corollary 3.3. Figure

3.2(c) displays such dynamics when the offered load ρ = 2.3.

3.4 Impacts of Heterogeneous Information

To answer the questions raised in the introduction, we investigate how a marginal increase
in the information level would affect the system performance measures. Specifically, we
are interested in the system throughput and social welfare in equilibrium. The system
throughput, denoted by λ, includes effective arrival rates of both informed and unin-
formed streams. That is,

λ(q) =

(
n−1∑
i=0

pi(q)

)
λI + qλU. (3.7)
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Likewise, social welfare is composed of contributions from both segments. Let SI(q) and
SU(q) be the total net utilities of informed and uninformed customers respectively. We
have

SI(q) =

[
n−1∑
i=0

pi(q)

(
R− c i+ 1

µ

)]
· γΛ

and

SU(q) =

[
q

∞∑
i=0

pi(q)

(
R− c i+ 1

µ

)]
· (1− γ)Λ = q(R− cW (q)) · (1− γ)Λ.

Social welfare is thus the sum of all customer net utilities, namely,

S(q) = SI(q) + SU(q). (3.8)

Although informed customers use the same state-dependent threshold strategy as if

they were in an observable queue (cf. Naor 1969), their contributions to the effective

arrival rate and social welfare also hinge on uninformed customer behaviors through

pi(q), i = 0, . . . , n − 1. On the one hand, this interaction, which is not captured by

either the observable model or the unobservable one, implies the decisive influence of

uninformed customer behavior in a general circumstance. On the other hand, it also

increases the technical difficulty of the analysis. One may be tempted to seek for a

general closed-form expression for the equilibrium joining probability q∗ of uninformed

customers as a function of γ and conduct comparative statics of λ(q∗(γ)) and S(q∗(γ)) on

the information level γ. However, it is a daunting, if not impossible, task. That is because

the equilibrium joining probability q∗ ∈ (0, 1) is characterized by a high-order polynomial

function: cW (q) = R, where W (q) is specified in Eq.(3.6). According to the Abel-

Ruffini Theorem, this type of equation in general has no algebraic solution in radicals.

Although the insolvability of q∗ hinders a direct approach to analyzing the system, we

will show monotonicity properties of equilibrium throughput and social welfare with

respect to the information level γ by taking an indirect approach. Somewhat surprisingly,

their monotonicity properties are uniquely determined by the type of equilibrium joining

strategy that uninformed customers adopt, namely, always-balk (i.e., q∗ = 0), always-join

(i.e., q∗ = 1), or randomization between balking and joining (i.e., 0 < q∗ < 1), which is

an outcome of interactions between informed and uninformed customers.

3.4.1 Throughput

Chen and Frank (2004) compare the throughput in the observable (i.e., γ = 1) and

unobservable (i.e., γ = 0) queues. They demonstrate that there is a unique critical level

ρ∗ such that if ρ > ρ∗, the throughput of the observable queue is more than that of the
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unobservable queue, and the converse holds if ρ < ρ∗. Their result provides an answer to

the comparison of λ (q∗(γ = 0)) and λ (q∗(γ = 1)), but does not reveal the marginal effect

of information on the equilibrium throughput λ(q∗(γ)) in general for γ ∈ [0, 1]. We will

characterize the monotonicity of the system equilibrium throughput λ in the information

level γ in this subsection.

We notice that it is difficult to directly analyze the throughput formula λ(q) in (3.7).

However, if we take a summation of all system states in (3.1) and (3.2), we observe that

n−1∑
i=1

(λI+qλU)pi(q)+

∞∑
i=n

qλUpi(q) = µ

∞∑
i=0

pi+1(q)⇐⇒ λ(q) =

(
n−1∑
i=0

pi(q)

)
λI+qλU = µ(1−p0(q)).

In other words, the system throughput equals the service rate minus the vacant capacity

due to idleness. Therefore, we can explore the monotonicity of the equilibrium throughput

via the probability of idleness in equilibrium.

Lemma 3.6 If q∗ ∈ [0, 1), the probability p0(q∗(γ)) that the server is idle strictly de-

creases in γ.

The above result means that as long as uninformed customers do not take the full-

participation strategy in equilibrium, the server is less likely to be idle as the real-time

congestion information becomes more prevalent. The declining idleness of the server

implies the growth in throughput as summarized in the next theorem.

Theorem 3.7 (Comparative Statics of Throughput) (i) If 0 ≤ q∗ < 1, the

throughput λ(q∗) is strictly increasing in γ.

(ii) If q∗ = 1, the throughput λ(q∗) is strictly decreasing in γ.

Theorem 3.7 says that system throughput benefits marginally from growing informa-

tion prevalence unless all uninformed customers choose to join the queue in equilibrium.

However, the negative effect of information on throughput can happen in a large range.

We use an example to illustrate this.

Example 3.1 Consider a system with the offered load ρ close to 1. From Corollary

3.4, limρ→1 L(ρ, ν) = 〈ν〉n+ n(n− 1)/2 by L’Hôpital’s rule and hence, limρ→1 γ
∗
1(ρ, ν) ≤

2/
√

2n(n− 1), which can be further bounded by 1/
√

3 ≈ 57.7% when n− 1 ≥ 2.

Corollary 3.4 confirms that if γ ≥ γ∗1(ρ, ν), uninformed customers always choose to

join the queue. Theorem 3.7 implies that if informed customers have a joining threshold

no less than 2, throughput will always suffer if there are more than 58% of informed cus-

tomers in the population. This simple example shows clearly that the system throughput
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can easily suffer from real-time congestion information if too many customers are in-

formed. This phenomenon is a result of equilibrium responses by uninformed customers

to the heterogeneous availability of information. Hence, it is not covered by the conven-

tional observable and unobservable frameworks. �

We next explain the intuition of Theorem 3.7 through its connection to Lemma 3.6. As

we have established, maximizing the throughput is equivalent to minimizing the server’s

probability of being idle, namely, p0(q∗). In principle, there are two reasons for idleness:

inadequate service requests (viz. low arrival rates) and an intertemporal mismatch be-

tween capacity and demand, i.e., the mean effect and the variability effect. Inadequate

service requests result from long times between arrivals relative to the mean service time.

In this case, the server often completes tasks at a rate higher than that of arrivals. There-

fore, the server is exposed to a high risk of idleness. The mismatch between capacity and

demand stems from the uncertainty about service times and arrivals. Service requests

may not always arrive at the moment the server is idle or the queue is short. As we shall

discuss, which effect is more dominant in causing idleness depends on the offered load.

Figure 3.3: Example: µ = 1, R = 4, c = 1, and Λ = 1.1
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(b) Throughput

When the offered load is relatively low, the customer arrival rate is low, and thus

the server is very likely to complete all tasks before another service request arrives.

Hence, too few service requests is the first-order effect that gives rise to idleness. In

order to improve throughput, the provider has to increase the average probability that

an individual customer will join the line. This rationale can also be seen mathematically.
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Rearranging (3.7), we write the throughput as

λ(q∗(γ)) =

(
n−1∑
i=0

pi(q
∗(γ))γ + q∗(γ) · (1− γ)

)
Λ,

where the term in the brackets represents the average joining probability of the entire

population. We next examine the role of information in incentivizing customer entrance

of the queue. Note that when the offered load is low, the queue is expected to be short

regardless of the information level γ. Although a marginal change in the information level

does affect the probability that the queue will be shorter than n and thus the chance

that an informed individual will join the queue, such an effect is very marginal due to

the low offered load. Therefore, the incentive for informed customers is not very sensitive

to information level changes, either upward or downward. In contrast, uninformed cus-

tomers are more sensitive to the change in information prevalence. As more uninformed

individuals become informed, the number of uninformed customers decreases. Moreover,

those who used to be uninformed but are now informed also join less often because they

anticipate positive, instead of zero, net utility to justify their participation. These two

effects together provide the remaining uninformed customers with a stronger incentive to

join. Consequently, as information becomes more ubiquitous, uninformed customers are

much more motivated to join the queue. Note that their enthusiasm reduces the chance

that the informed customers will join. But as we argued before, this effect is marginal due

to the low offered load. Combining both segments, we can see that the average customer

joining probability rises as a function of the information level γ, with the uninformed

segment being more significantly incentivized and the informed segment being slightly

discouraged. The dotted curve in Figure 3.3(a) shows the average joining probability

of the entire customer pool. As we see, it increases up to γ = 0.51, at which point

uninformed customers start to join definitely. Unfortunately, the remaining uninformed

customers cannot be further stimulated if all of them have chosen to join. Therefore,

when q∗ reaches 1, the provider loses its beneficial leverage in motivating uninformed

customers through information. As more uninformed customers become informed after

q∗ hits 1, they join less than when they were uninformed. Consequently, the average

joining probability goes down, as shown by the dotted curve in Figure 3.3(a) beyond

γ = 0.51. Figure 3.3(b) displays the change in throughput as a function of γ. The pat-

tern in Figure 3.3(b) exactly matches that of the average joining probability in Figure

3.3(a).

When the offered load is high enough, the customer arrival rate is high, and thus

there are enough service requests. Yet, an intertemporal mismatch between capacity



www.manaraa.com

Chapter 3. Efficient Information Heterogeneity in a Queue 67

and arrivals due to system variability becomes the primary reason for server idleness. In

this situation, increasing the availability of real-time information is an effective strategy.

That is because the more informed customers there are, the more quickly the desirable

positions with fewer than n customers ahead are taken. This reduces the likelihood that

the server being idle, thus improving the throughput.

In summary, increasing the availability of information improves system throughput

unless uninformed customers all join the queue. However, the reason for the phenomenon

may be different for various offered loads. Under a low offered load, growing information

prevalence slightly reduces each informed customer’s probability of joining the queue,

but it dramatically motivates risk-neutral uninformed customers to join. The average

joining probability thus improves and so does the throughput. However, the throughput

declines if uninformed customers cannot be further incentivized since they have already

all chosen to join. In contrast, if the offered load is high, growing information prevalence

helps minimize the risk of idleness by more effectively matching capacity with demand.

Our reasoning can easily explain the findings of Chen and Frank (2004). When ρ < ρ∗,

the offered load is low. The provider wants to increase the probability that each customer

will join. Then, an unobservable queue is favorable since customers will only join under

positive utility if they are informed, but will tolerate zero utility if they are uninformed.

When ρ > ρ∗, the offered load is high. Minimizing mismatch due to uncertainty through

information disclosure is an effective tactic. Thus, an observable queue is preferred.

Recall that the equilibrium strategy of uninformed customers depends on the offered

load according to Theorem 3.5. Thus, the following result, as a direct corollary from

Theorems 3.5 and 3.7, specifies the impact of growing information prevalence on the

throughput in the primitive space (ρ, ν).

Corollary 3.8 For given ρ and ν, define ρ ≡ 1− 1/ν and ρ ≡ y∗(ν) respectively. Then,

(i) If 0 < ρ < ρ, the throughput λ(q∗) is strictly decreasing in γ.

(ii) If ρ ≤ ρ ≤ ρ, the throughput λ(q∗) is strictly increasing in γ ∈ [0, γ∗1(ρ, ν)) and is

strictly decreasing in γ ∈ [γ∗1(ρ, ν), 1].

(iii) If ρ > ρ, the throughput λ(q∗) is strictly increasing in γ.

We refer to Figure 3.1 to illustrate Corollary 3.8. Case (i), where information always

hurts the throughput, corresponds to the area below the dashed line. Case (iii), where

information always benefits the throughput, corresponds to the areas above the solid line.

The more intriguing case (ii), where the equilibrium throughput λ(q∗) is unimodal in γ,
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corresponds to the intermediate area between the two lines. In this area, there is always

an intermediate information level γ∗1(ρ, ν) that maximizes the system throughput. There-

fore, the system throughput with heterogeneous congestion information outperforms its

counterparts with all customers equally informed or uninformed.

Figure 3.4: Example: µ = 1, R = 4, c = 1, and Λ = 0.8
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(a) Joining Probability
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(b) Throughput

The comparison of observable and unobservable queues in Chen and Frank (2004) is a

special case of Corollary 3.8 for γ = 0 and γ = 1. Our result shows that the unobservable

and observable queues are preferred in cases (i) and (iii) respectively. Therefore, Corollary

3.8 implies that the critical level ρ∗ in Chen and Frank (2004) must lie between ρ and

ρ. For instance, Figure 3.3 shows that the observable queue is more favorable than an

unobservable counterpart when ρ = 1.1, whereas the converse holds when ρ = 0.8 as

shown in Figure 3.4.

In this subsection, we proved that information heterogeneity in the real-time queue

length can effectively improve the system throughput, except for the case in which the

offered load is sufficiently low or high. Our result generalizes the comparison of Chen and

Frank (2004) to account for more realistic circumstances and also identifies the crucial

role that uninformed customers play in a service system.

3.4.2 Social Welfare

In this subsection, we devote our attention to social welfare. Previous literature argues

that real-time congestion information is efficient in improving social welfare because it

helps customers make efficient decisions: they do not join a long queue and do not balk

from a short one. Thus, it is believed that delay information should be disclosed for the
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sake of society. Thanks to the advances in information technology, it is easier than ever

to obtain all kinds of congestion information for public facilities, e.g., border services and

highways. Is it really the case that all customers being informed always maximizes social

welfare? We will answer that question in this subsection. We first discuss the influence

of the increasing availability of information on individual net utility and then consider

total social welfare as a whole.

For ease of exposition, we denote the individual net utility of informed and uninformed

customers by SI(q) and SU(q), respectively. Specifically,

SI(q) =
n−1∑
i=0

pi(q)

(
R− ci+ 1

µ

)
and SU(q) = q

∞∑
i=0

pi(q)

(
R− ci+ 1

µ

)
= q(R− cW (q)).

By definition, an individual uninformed customer receives a non-zero utility only if q∗ = 1

in equilibrium. An informed customer earns not only a non-negative utility but also a

higher utility than an uninformed customer does at any information level. It turns out

the monotonicities of SI and SU in the information level are also uniquely determined by

the type of uninformed customers’ equilibrium actions.

Theorem 3.9 (Comparative Statics of Individual Welfare) (i) SI(q
∗) is strictly

decreasing in γ if 0 ≤ q∗ < 1 and is strictly increasing in γ if q∗ = 1.

(ii) SU(q
∗) = 0 if 0 ≤ q∗ < 1 and SU(q

∗) is strictly increasing in γ if q∗ = 1.

The results in the above theorem can be considered as implications from Theorem

3.7. When 0 ≤ q∗ < 1, the system throughput increases in the information level γ by

Theorem 3.7. Hence, the system is expected to be more congested, a situation which

erodes the net utility of each informed individual. Yet when q∗ = 1, as γ increases, the

throughput decreases and the system congestion is relieved. Hence, both informed and

uninformed individuals obtain more net utility.

We next consider the total consumer net utility, i.e., social welfare. By (3.8), we have

S(q) = SI(q) + SU(q) = SI(q) · γΛ + SU(q) · (1− γ)Λ.

In the case of q∗ ∈ [0, 1), since SU(q
∗) = 0, social welfare is simply the total utility of

informed customers. Although the individual net utility of informed customers decreases

in γ for q∗ ∈ [0, 1), the number of informed customers also increases. The next result

shows that information ubiquity improves social welfare unless no uninformed customers

are interested in the service, i.e., q∗ = 0.
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Theorem 3.10 (Comparative Statics of Social Welfare) (i) If q∗ = 0, the

social welfare SI(q
∗) +SU(q

∗) is strictly increasing in γ for 1 ≤ ν < 2 and is strictly

decreasing in γ for ν ≥ 2.

(ii) If 0 < q∗ ≤ 1, the social welfare SI(q
∗) + SU(q

∗) is strictly increasing in γ.

Theorem 3.10 first confirms the conventional wisdom that in general, real-time con-

gestion information can efficiently match the potential available capacity of a system with

customer demand. That is, with congestion information, customers are able to join the

service line immediately whenever they observe a short queue, which signals forthcoming

availability of the server. We may therefore expect that real-time information always

improves social welfare. However, a potentially negative effect due to (negative) queue-

ing externality may also arise from the disclosure of congestion information, as Theorem

3.9(i) reveals. Growing information prevalence may also result in constantly declining in-

dividual utility, specifically when the system faces a high offered load. As the fraction of

informed customers increases, more informed customers are competing with one another

for the desirable positions that have fewer than n customers ahead of them. Because

of the high offered load and the efficiency of information in matching waiting slots with

demand, such positions are quickly taken as soon as they are available. Therefore, as γ

increases, informed customers are expected to see a longer queue upon arrival and to be

more likely to balk, both of which cases reduce their individual net utility.

The diminishing individual net utility of informed customers would not cause a loss

of social welfare as long as uninformed customers are still interested in the service, i.e.,

q∗ > 0. That is because, given their disadvantage from not being able to make instanta-

neous responses to system states, uninformed customers compromise by joining the queue

infrequently when they expect a long line due to a high offered load. The low incentive

for them to join the line helps mitigate the congestion. When an even larger portion of

the high-volume customers become informed, uninformed customers have an even lower

incentive to join the line. This declining interest in the service frees up the tight ca-

pacity for informed customers, who earn higher utility than uninformed customers, who

earn zero utility. More importantly, the reduced participation of uninformed customers

alleviates competition among informed customers for the appealing positions and thus

prevents the informed customers’ joining probability and individual net utility from de-

scending quickly. Nonetheless, after all uninformed customers lose their interest in the

service and choose to balk, i.e., q∗ = 0, more prevalent information only increases the

number of informed customers. Without the uninformed customers’ compromise, the

increased number of informed customers significantly intensifies the competition among
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informed customers for the appealing queue positions. The individual net utility of an

informed customer therefore decreases faster when q∗ = 0 than when q∗ > 0. As a result,

if no uninformed customers consider joining, social welfare starts to deteriorate when

real-time delay information is more prevalent.

Figure 3.5: Example: µ = 1, R = 4, c = 1, and Λ = 2.3
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Figure 3.5, which uses ρ = 2.3 as an example, illustrates the patterns. For informed

customers, their joining probability and individual net utility both decline with the in-

formation level γ. However, when q∗ > 0, both metrics decease noticeably more slowly

than when q∗ = 0. As we have discussed, this difference can be explained by uninformed

customers’ disincentives to join. This declining incentive to join, together with the de-

clining number of the uninformed customers, helps the system use its tight capacity to

serve more customers who can yield higher welfare. These effects no longer exist when

the uninformed customers completely refrain from joining.

Combining Theorems 3.5 and 3.10, we can conclude what the monotonicity properties

of the social welfare are under different offered loads.

Corollary 3.11 For 1 ≤ ν < 2, the social welfare is strictly increasing in γ. For ν ≥ 2,

(i) If 0 ≤ ρ ≤ y∗(ν), the equilibrium social welfare is strictly increasing in γ.

(ii) If ρ > y∗(ν), the equilibrium social welfare is strictly increasing in γ ∈ [0, γ∗0(ρ, ν))

and is decreasing in γ ∈ [γ∗0(ρ, ν), 1].

Theorem 3.10 and Corollary 3.11 have two implications. First, absolute transparency

in congestion information may not achieve the most economic efficiency. Specifically, a

highly loaded system yields the most social welfare if some customers are uninformed.

Second, even if information is not at the optimal level γ∗0(ρ, ν), the social welfare under

heterogeneous information can still outperform a completely observable counterpart for
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a large range of information levels. For instance, social welfare for any γ ∈ (0.38, 1) is

higher than when γ = 1 in the example displayed by Figure 3.5.

As an exception, if customers have a very low service reward R such that the informed

ones join the queue only when it is empty, in which case 1 ≤ ν < 2, information always

helps, even when q∗ = 0. From the perspective of a server, the line temporarily holds

waiting customers and supplies the server with customers upon completion of a job. If

q∗ = 0, even uninformed customers do not join a queue. As a result, no one intends to

queue at all. After completing a service request, the server has to remain idle and wait

until the next customer arrives to resume generating welfare. Therefore, the server has

a strong incentive to rely on the ubiquity of information to secure a customer as soon as

its capacity is available. Such different behavior from the general case, when informed

customers are willing to be the only one in the queue, is also observed in Hassin (1986).

Summary. Table 3.1 summarizes the effects of growing information prevalence on

various performance measures. The effects depend on the type of the equilibrium joining

strategy by uninformed customers, specified by their equilibrium joining probability q∗.

One can easily visualize the effects of information prevalence and the optimal information

levels in the primitive space (ρ, ν), illustrated in Figure 3.1, by combining Theorem 3.5

and Table 3.1.

Table 3.1: Comparative Statics in γ

q∗ = 0 0 < q∗ < 1 q∗ = 1

Throughput ↑ ↑ ↓
Individual welfare of informed customers ↓ ↓ ↑

Individual welfare of uninformed customers 0 0 ↑
Social welfare ↓∗ ↑ ↑

∗: ↑ for ν ∈ [1, 2).

A central question in any resource allocation problem is to define the notion of ef-

ficiency. To an engineer, throughput, which implies the utilization of the server, is the

relevant efficiency measure. To an economist, social welfare, which focuses on the overall

economic benefit, may be a more suitable measure. We show that the effects of growing

information prevalence on these two efficiency measures do not go in the same direction

in the two extreme cases q∗ = 0 and q∗ = 1.

If throughput is the focal performance measure, the service provider should reveal

the queue length and encourage information dissemination when the offered load is high

enough (the top area in Figure 3.1) and conceal it when the offered load is low enough

(the bottom area in Figure 3.1). Otherwise, it is optimal to have a segment of uninformed
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customers or reveal the real-time information only to a fraction of customers if the offered

load is in an intermediate range (the middle area in Figure 3.1).

If social welfare is the focal performance measure, the service provider should reveal

the queue length information and encourage its dissemination when the offered load is

relatively small (the areas below the solid line in Figure 3.1). In other situations (the

area above the solid line, i.e., the top area, in Figure 3.1), it is optimal to have a segment

of uninformed customers or, equivalently, the real-time congestion information should be

hidden from certain customers.

3.5 Endogenizing Information Levels

Our base model provides an optimistic view on the impacts of information heterogeneity.

The fact that some customers do not possess real-time delay information indeed helps

the system throughput when the offered load is modest and improves the social welfare

when the offered load is high.

However, it should be noted that information ignorance would normally be considered

irrational if access to the information is completely free. Uninformed customers who do

not obtain real-time information always earn less utility than informed customers. There-

fore, if congestion information is free and convenient, a rational, uninformed customer

has every incentive to learn the queue length. Consequently, all customers would choose

to be informed in equilibrium under self-interested rational choices. Next we discuss how

the service provider can achieve the optimal information level by charging an information

fee, when customers are completely rational. For this purpose, we temporarily assume in

this section that all customers exhibit self-interested, utility-maximization behavior and

they know the system parameters Λ, µ, R and c.

3.5.1 Inducing the Optimal Throughput

The optimal information levels can be easily induced when the offered load is either very

high or low. Recall that if ρ > ρ, the system throughput is maximized when all customers

are informed; i.e., γ = 1. Therefore, with congestion information revealed by the provider,

the self-interested choice by all customers to be informed leads to an equilibrium that

is also sustained as a system optimum. If ρ < ρ, no one’s being informed leads to

the maximum throughput. Thus, the provider can simply conceal real-time congestion

information such that no customers can be informed.

In the case where the offered load is in an intermediate range, i.e., when ρ ≤ ρ ≤ ρ, the
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system throughput is maximized at γ = γ∗1 according to Corollary 3.8. In this case, the

optimal information level is not achievable through decentralized actions by customers

under either queue-length transparency or secrecy. An information fee can resolve this

issue. As long as the exact fraction γ∗1 of customers are induced to pay the fee, the

throughput is maximized.

Proposition 3.12 (Information Fee for Optimal Throughput) Assume customers

are rational. If the offered load ρ ∈ [ρ, ρ], the service provider induces the optimal infor-

mation level that maximizes throughput, by charging an information fee f = SI(γ
∗
1).

Figure 3.6: Illustration of Information Fee (µ = 1, R = 4, and c = 1)
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(a) ρ = Λ/µ = 1.1
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(b) ρ = Λ/µ = 2.3

We use Figure 3.6(a) where ρ = 1.1 to illustrate Proposition 3.12. We first show that

for the base model, if an exogenous fraction of informed customers are forced to pay an

information fee f = SI(γ
∗
1) and the rest stay uninformed, the informed customers still

earn a non-negative utility after paying the fee and the system behaves exactly the same

as in the base model. With no information fee, being informed yields higher individual net

utility than being uninformed, as the bold dashed curve stays above the solid one in Figure

3.6(a). Note that the individual net utility of an informed customer reaches its minimum

when γ = γ∗1 = 0.51, at which point the system throughput peaks (see Figure 3.3). Now,

assume that informed customers are forced to pay a fee f = SI(γ
∗
1) − SU(γ

∗
1) = SI(γ

∗
1),

which equals the utility difference of an informed customer and an uninformed one at

γ = γ∗1 , for inspecting the queue length. Then the utility curve of informed customers

shifts downward to the position displayed by the thin dotted line in Figure 3.6(a). As

shown in the plot, informed customers still earn a non-negative utility after paying the
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information fee, regardless of their fraction in the population. This implies that the

additional information fee would not alter the joining behavior of informed customers,

if they have to pay the fee. Hence, the irrational, uninformed customers have the same

equilibrium joining probability q∗ as before, regardless of the size of informed customers.

In other words, if informed customers are required to pay the fee f = SI(γ
∗
1), the system

behaves in exactly the same way as in the base model, except that informed customers

receive less utility at any information level γ.

Given the characterized system dynamics with the information fee f = SI(γ
∗
1) for

any given γ, we further show that in the current setting under self-interested choices by

all customers, the system reaches an equilibrium in which γ∗1 fraction of customers are

willing to pay the fee to be informed and the rest are not willing to do so and hence stay

uninformed. Suppose that the system is in a state where less than γ∗1 fraction pay the

fee and are informed; i.e., γ < γ∗1 . From Figure 3.6(a), we see that not paying the fee

and staying uninformed earns zero utility and is dominated by paying the information fee

and being informed; i.e., SI(γ)− f > SU(γ) = 0 for γ < γ∗1 . Therefore, some uninformed

customers have the incentive to become informed until γ = γ∗1 . Next, consider the system

in a state where more than γ∗1 fraction are informed; i.e., γ > γ∗1 . In this case, paying the

information fee is not worthwhile. Saving the cost and being uninformed yields higher

utility; i.e., SI(γ)− f < SU(γ) for γ > γ∗1 . Therefore, some informed customers have the

incentive not to pay for real-time information and become uninformed until γ = γ∗1 . As

a result, at γ = γ∗1 , both options, being informed or uninformed, are equally appealing.

The system reaches an equilibrium, in which the information level that maximizes the

throughput is induced through customer decentralized choices under the information fee

f = SI(γ
∗
1).

3.5.2 Inducing the Optimal Social Welfare

According to Corollary 3.11, if the offered load is not high, i.e., if ρ ≤ ρ, the system attains

its optimal social welfare when all customers are informed. This can be accomplished

by customer self-interested choices under queue-length information transparency, since

being informed is a dominant strategy. Hence, social welfare optimality can be achieved

without any coercion as long as the service provider reveals the real-time congestion

information. In contrast, if the offered load is high, i.e., if ρ > ρ, the optimal social

welfare is achieved when γ = γ∗0 , at which point uninformed customers have an incentive

to become informed. The social welfare optimality thus cannot be established through

decentralized decisions under information transparency. The service provider has to
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charge an information fee to achieve the socially optimal solution.

Notice that with an information fee, the social welfare includes total customer welfare

and service provider’s collected fees (cf. Hassin and Haviv 2003 p. 49); i.e.,

S =

(
n−1∑
i=0

pi(q)

(
R− ci+ 1

µ

)
− f

)
· γΛ + q · (R− cW (q)) · (1− γ)Λ + f · γΛ.

The term f · γΛ cancels out, reflecting the fact that from the perspective of the entire

society, the information fee is only a transfer payment that has no effect on the value of

social welfare itself but can help regulate the demand side and potentially achieve social

optimality.

Proposition 3.13 (Information Fee for Optimal Social Welfare) Assume cus-

tomers are rational. If the offered load ρ > ρ, the service provider induces the opti-

mal information level that maximizes the social welfare, by charging an information fee

f = SI(γ
∗
0).

The idea behind Proposition 3.13 is similar to that behind Proposition 3.12, but with

a minor difference. We use Figure 3.6(b) where ρ = 2.3 for illustration. As in the example

displayed by Figure 3.6(a), if all informed customers are required to pay the information

fee (assuming they cannot choose not to pay the fee and become uninformed), their

individual utility curve shifts from the bold dashed line to the thin dotted one. For any

γ < γ∗0 , informed customers still earn positive utility after information payment, which is

more than the zero utility of uninformed customers. Hence, some uninformed customers

would like to inspect the queue by paying the fee. The incentive for converting from

the uninformed to the informed vanishes until γ = γ∗0 , at which point being informed or

uninformed receives the same individual net utility. So far, the rationale for Proposition

3.13 is the same as that for Proposition 3.12. The difference comes when γ > γ∗0 . As

illustrated by the thin dotted line in Figure 3.6(b), for γ > γ∗0 , the γ fraction of informed

customers would incur negative utility after paying the information fee. This implies that

under self-interested choices, paying an information fee f = SI(γ
∗
0) is not individually

rational for the informed customers whose fraction is more than γ∗0 . As a result, γ = γ∗0

emerges as an equilibrium through customer decentralized decisions when the service

provider charges an information fee f = SI(γ
∗
0) for inspecting the queue.

Although our discussion focuses on achieving the optimal information level to max-

imize throughput or social welfare, the service provider may have other objectives and

can charge a different information fee to achieve another desired information level.
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3.6 Impacts of Heterogeneous Customer Character-

istics

In the base model, we treated all customers as identical agents except for their possession

of real-time congestion information. It is plausible that informed customers might have

other characteristics different from the uninformed, which also could explain the difference

in their information possession. For instance, informed customers tend to own a smart

phone, be more technology savvy and younger, and hence might be less patient. In

this section, we explore how other heterogeneities, in addition to awareness of real-time

congestion, in customer characteristics may interact with information heterogeneity in

affecting the throughput and social welfare. Specifically, we assume that informed and

uninformed customers receive a reward of, respectively, RI and RU from the service.

Moreover, their respective unit waiting costs are cI and cU. In terms of joining strategy,

informed customers still use a threshold policy: They join the line if and only if the queue

length is less than nI ≡ bνIc ≡ bRIµ/cIc; otherwise, they choose to balk. In contrast,

uninformed customers choose their joining probability q according to the expected utility

RU − cUW (q). In other words, the dynamics of this extended model evolve in the same

vein as the base model. As shown below, the additional customer heterogeneities do not

change our result for the system throughput.

Theorem 3.14 (Comparative Statics of Throughput) Consider the model with

heterogeneous customer characteristics.

(i) If 0 ≤ q∗ < 1, the throughput λ(q∗) is strictly increasing in γ.

(ii) If q∗ = 1, the throughput λ(q∗) is strictly decreasing in γ.

Recall that maximizing the system throughput is equivalent to minimizing the idleness

of the server, which results from inadequate service requests and an intertemporal mis-

match between capacity and demand, i.e., the mean effect and the variability effect. As

we have argued, ubiquity of congestion information improves throughput by overcoming

the mean effect under low offered loads by incentivizing uninformed customers, and effec-

tively reducing the variability effect under high offered loads by matching capacity and

waiting slots better with informed customers intertemporally. The influence of informa-

tion remains robust when service rewards and unit waiting costs become heterogeneous.

So is our result for throughput.

On the other hand, social welfare directly measures the total service rewards less the

costs of delay. Thus, the result for social welfare is expected to be affected by customer
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heterogeneities. The following result indicates the key conditions that might cause a

difference.

Theorem 3.15 (Comparative Statics of Social Welfare) Consider the model with

heterogeneous customer characteristics. Let νI ≡ RIµ/cI ≥ 2 and νU ≡ RUµ/cU.

(i) If q∗ = 0, the social welfare SI(q
∗) + SU(q

∗) is strictly decreasing in γ.

(ii) If 0 < q∗ < 1, the social welfare SI(q
∗) +SU(q

∗) is strictly increasing in γ if νI ≥ νU.

Otherwise, the social welfare might be unimodal in γ.

(iii) If q∗ = 1, the social welfare SI(q
∗) + SU(q

∗) is strictly increasing in γ if bνIc ≥
νU − 1+(1−γ)ρ

1−(1−γ)ρ
. Otherwise, the social welfare might be unimodal in γ.

Theorem 3.15 reveals that if νI is no less than νU, our welfare result for the homoge-

neous case still holds for the heterogeneous extension. Otherwise, the social welfare can

even be unimodal in the information level over the range such that q∗ ∈ (0, 1) or q∗ = 1.

The parameters νI and νU are the joining thresholds for informed and uninformed

customers if they can observe the queue length. Since customers who tolerate a longer

queue implies their higher valuation of service relative to their unit waiting cost, we can

consider νI and νU as normalized service valuations of each customer segment. In the

homogeneous case, in which both segments of customers value the service equally, the

monotonicity of the social welfare in the information level γ is primarily determined by

the total utility of the informed customers. Such an effect is expected to be more salient

if informed customers value the service more than the uninformed ones. Thus, the result

in the heterogeneous case is similar to the homogeneous case if νI is relatively larger than

νU as stated in Theorem 3.15, parts (ii) and (iii).

On the contrary, if uninformed customers relatively value the service more, they have

a stronger incentive to seek service, and that may cause the monotonicity property of

the social welfare to be different from that of the homogeneous case. We use an example,

which is displayed in Figure 3.7, to illustrate the differences in uninformed customers’

equilibrium behavior and their impacts on informed customers and social welfare. For

comparison with the homogeneous case, we choose the same system parameters as those

in Figure 3.5, except that uninformed customers receive a reward RU = 6 instead of 4

while the reward for the informed, RI, is still 4.

We first discuss the differences in the incentive and behavior of uninformed customers

between the heterogeneous and homogeneous cases, and its impact on the informed cus-

tomers whose joining threshold remains unchanged. For the same information level γ,
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uninformed customers are more enthusiastic about joining the queue in the heterogeneous

case than they are in the homogeneous case.7 This is because uninformed customers value

the service higher than they do in the homogeneous case. Then they earn higher individ-

ual net utility for any given queue length. Hence, their equilibrium joining probability

q∗, represented by the solid curve in Figure 3.7(a), is higher than it is in the homoge-

neous case, represented by the dotted curve in the same plot. Such an increased joining

probability leads to more uninformed customers competing with informed ones for wait-

ing positions with fewer than 4 people ahead. As a result, informed customers are less

likely to join the line and earn positive utilities in the heterogeneous case than in the

homogeneous case for the same information level γ. This explains why the dashed lines

stay below the dash-dot ones in Figures 3.7(a) and 3.7(b) , respectively. Furthermore,

due to larger externalities exerted by uninformed ones (as a larger q∗ at the same γ)

in the heterogeneous case, the total welfare generated by the informed segment is lower

than it is in the homogeneous case, as displayed by the bold dashed curve and the thin

dotted one in Figure 3.7(c).

Figure 3.7: Example: µ = 1, RI = 4, RU = 6, c = 1, and Λ = 2.3
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(a) Joining Probability
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(b) Individual Net Utility
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(c) Social Welfare

For the heterogeneous case, uninformed customers’ equilibrium joining probability q∗

increases in the information level γ, whereas the joining probability of informed customers

first declines then increases in γ. In contrast, for the homogeneous case, q∗ decreases in

the information level γ given the relatively high offered load ρ = 2.3. Since νU = 6 >

νI = 4, 4 or 5 customers waiting ahead is only welcome by uninformed customers but is

not acceptable to informed ones. As γ increases, the number of uninformed customers

declines. Therefore, the fourth and fifth positions in the queue are more likely to be

available, and that contributes to an increasing equilibrium joining probability q∗ by

7In fact, it can be rigorously proved that if νU ≥ bνIc+ 1, uninformed customers will never choose to
always balk in equilibrium regardless of the offered load ρ = Λ/µ. This is not the case if νU = νI.
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the uninformed customers. While q∗ increases in γ, the probability that an informed

customer observes a queue shorter than nI decreases. This decay stops when q∗ reaches

1, corresponding to γ = 0.72, beyond which a further increase in γ only lowers the number

of uninformed customers with no possibility of boosting q∗ further. Therefore, congestion

starts to be alleviated as the throughput starts to decrease (see Theorem 3.14(ii)). As

a result, the joining probability of informed customers increases in γ after q∗ hits 1. So

do the individual net utilities of informed and uninformed customers, as shown in the

second plot of Figure 3.7(b).8

The increasing joining probability q∗ of uninformed customers in the information level

γ can result in the unimodal behavior of social welfare over the range of q∗ ∈ (0, 1). As

γ grows, uninformed customers join the queue more often, and thus inflict more negative

externalities on informed customers in the heterogenous case. In contrast, as γ increases,

uninformed customers join the queue less often in the homogeneous case. As a result, in

the heterogeneous case, the consumer welfare of the informed segment, which also equals

the social welfare, does not necessarily increase in the growing information prevalence

like the homogeneous case, and it may decline from a certain point, as shown in Figure

3.7(c).

When q∗ = 1, the number of informed customers and their individual net utility both

increase in γ. The total consumer welfare of the informed customers hence must increase

in γ. For the uninformed segment, although the net utility of an uninformed customer in-

creases from zero, the size of the segment shrinks to zero. The total uninformed customer

welfare is thus unimodal in γ. In the heterogeneous case, the welfare of the uninformed

customers contributes to a larger portion of social welfare. Thus, the unimodal behavior

of the uninformed customers’ welfare can lead to the unimodal behavior of social welfare

in γ over the range of q∗ = 1.

In summary, when customers of different information segments exhibit different char-

acteristics, the results for the system throughput remain the same as in the homogeneous

case. However, the results for social welfare can be different. As a result, in addition

to the effect of information heterogeneity, the non-monotonic behavior of social welfare

in the information level may also result from uninformed customers’ high service valu-

ation or low unit delay cost. In reality, uninformed customers could also have different

characteristics, for which case our numerical experiments confirm similar insights.

8Note that since RU > RI, an uninformed customer is able to receive higher individual utility than
an informed customer when q∗ = 1, as shown in Figure 3.7(b). This situation never occurs in the
homogeneous case.
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3.7 Conclusion

We have considered information heterogeneity in a service system and described the ef-

fect of more informed customers in the population on various performance measures. In

particular, that effect can be determined by the type of the equilibrium joining behav-

ior of uninformed customers. Perhaps surprisingly, we have shown that more informed

customers may not necessarily benefit throughput or social welfare.

Our results suggest that the presence of uninformed customers who interact with

informed customers does not necessarily jeopardize system performance. The informa-

tion ignorance behavior may not be as detrimental as one might expect. In fact, the

information heterogeneity helps the system in certain conditions. Our results may raise

the question whether the current practice of disseminating free delay information is the

most effective approach to managing congestion and whether an information fee might

be introduced to intentionally create heterogeneity in the possession of delay informa-

tion. Another implication of our results is that service providers can be better off by

limiting access to real-time information about delays so as to intentionally create a mix

of informed and uninformed customers. Our findings may well justify Disney World’s

practice of allowing only premium customers to obtain waiting-time information about

its popular attractions.9 In that case, the amusement park may try to maximize the total

satisfaction levels associated with customer experiences in the park. Another possible

way of controlling the availability of congestion information is through targeted delay an-

nouncements. For a loaded call center, the service provider may consider making delay

announcements only to a fraction of callers, e.g., loyal customers.

3.8 Appendix

3.8.1 Technical Results

Lemma 3.16 The function L(ρ, ν) defined in Corollary 3.4 is strictly decreasing in ρ.

Proof of Lemma 3.16. For notation simplicity, we suppress L(ρ, ν)’s dependence on

ν and write L(ρ) or simply L. By the definition of L(ρ),

dL

dρ
=

φ(ρ)

ρn+1(ρ− 1)3
,

9A TouringPlans.com Premium Subscription is needed for access to the data on waiting times and
crowds through a mobile app.

TouringPlans.com
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where

φ(ρ) ≡ ν(n+ 1)ρ2 + (2− ν − 2nν + n)ρ+ nν − n− 〈ν〉ρn+2 + (〈ν〉 − 2)ρn+1.

Taking first and second derivatives of φ(ρ) with respect to ρ, we have

φ′(ρ) =
dφ

dρ
= 2ν(n+ 1)ρ+ (2− ν− 2nν+n)− (n+ 2)〈ν〉ρn+1 + (n+ 1)(〈ν〉− 2)ρn (3.9)

and

φ′′(ρ) =
d2φ

dρ2
= 2ν(n+ 1)− (n+ 1)(n+ 2)〈ν〉ρn + n(n+ 1)(〈ν〉 − 2)ρn−1

= (n+ 1)
[
2ν − 2nρn−1 − 〈ν〉

(
2ρn + nρn − nρn−1

)]
ν=n+〈ν〉

= (n+ 1)
[
2n(1− ρn−1) + 〈ν〉

(
2(1− ρn) + nρn−1(1− ρ)

)]
= (n+ 1)(1− ρ)

[
2n

n−2∑
i=0

ρi + 〈ν〉

(
2
n−1∑
i=0

ρi + nρn−1

)]
, (3.10)

where
∑n−2

i=0 ρ
i is understood as 0 for n = 1. Moreover, note that φ(1) = φ′(1) = 0.

Hence, by Eq.(3.9) and (3.10),

 φ′′(ρ) > 0, if 0 < ρ < 1

φ′′(ρ) < 0, if ρ > 1
=⇒

 φ′(ρ) < φ′(1) = 0, if 0 < ρ < 1

φ′(ρ) < φ′(1) = 0, if ρ > 1
=⇒

 φ(ρ) > φ(1) = 0, if 0 < ρ < 1

φ(ρ) < φ(1) = 0, if ρ > 1
.

Therefore,
dL

dρ
=

φ(ρ)

ρn+1(ρ− 1)3
< 0 for 0 < ρ < 1 and ρ > 1. Finally, by L’Hôpital’s rule,

lim
ρ→1

dL

dρ
= n(n + 1)(n + 2 − 3ν)/6, which is negative for all ν > 1 and is zero for ν = 1.

We thus conclude that
dL

dρ
< 0 for ρ > 0 (almost surely except for the point ρ = 1 when

ν = 1), i.e., L(ρ) is strictly decreasing in ρ (note that the derivative being equal to 0 at

one point does not affect the strict monotonicity of a function).

Lemma 3.17 In the neighborhood where full participation is not adopted by uninformed

customers in equilibrium, i.e., q∗ ∈ [0, 1), for any information level γ′, there exists k < n

such that

dpi(q
∗(γ))

dγ

∣∣∣∣
γ=γ′

< 0 for 0 ≤ i ≤ k and
dpi(q

∗(γ))

dγ

∣∣∣∣
γ=γ′
≥ 0 for k < i < n.

Proof of Lemma 3.17. We have shown, in Lemma 3.6, that p0(q∗(γ)) strictly decreases

in γ for 0 ≤ q∗ < 1. At γ = γ′, if for any i = 1, . . . , n − 1, dpi(q
∗(γ′))/dγ < 0. Then,
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k = n− 1.

If there exists k < n − 1, such that dpk(q
∗(γ′))/dγ ≥ 0 at γ′, then the statement

holds as long as for any i = k, k + 1, . . . , n − 1, dpi(q
∗(γ′))dγ ≥ 0. Let ρC(γ) = γρ +

q∗(γ)(1 − γ)ρ, where 0 ≤ q∗(γ) < 1. By Eq. (3.3), pi(q
∗(γ)) = pk(q

∗(γ))ρi−k
C

(γ) =

p0(q∗(γ))ρk
C
(γ)ρi−k

C
(γ). Thereby, for i = k, k + 1, . . . , n− 1,

dpi(q
∗(γ))

dγ
=
dpk(q

∗(γ))

dγ
ρi−k
C

(γ)︸ ︷︷ ︸
≥0

+ pk(q
∗(γ))(i− k)ρi−k−1

U
(γ)︸ ︷︷ ︸

≥0

dρC(γ)

dγ
.

At γ′, dpk(q
∗(γ′))/dγ ≥ 0 by assumption. Hence, if dρC(γ

′)/dγ ≥ 0, dpi(q
∗(γ′))/dγ ≥ 0.

Note that

dpk(q
∗(γ))

dγ
=
dp0(q∗(γ))

dγ
ρk
C
(γ) + p0(q∗(γ))kρk−1

C
(γ)

dρC(γ)

dγ
≥ 0.

The first term is negative since p0(q∗(γ)) strictly decreases in γ. Hence, dpk(q
∗(γ′))/dγ ≥

0 implies dρC(γ
′)/dγ ≥ 0, which further leads to dpi(q

∗(γ′))/dγ ≥ 0 for i = k, k+1, . . . , n−
1.

Proposition 3.18 (Joining Probability For Informed Customers)

(i) If 0 ≤ q∗ < 1, the probability
∑n−1

i=0 pi(q
∗) that an informed customer joins the

queue is strictly decreasing in γ.

(ii) If q∗ = 1, the probability
∑n−1

i=0 pi(q
∗) that an informed customer joins the queue

is strictly increasing in γ.

Proof of Proposition 3.18. (i) When q∗ = 0,
n−1∑
i=0

pi(q
∗ = 0) = p0(q∗ = 0)

n−1∑
i=0

(γρ)i =

1−(γρ)n

1−(γρ)n+1 . It is straightforward to verify that 1−(γρ)n

1−(γρ)n+1 , n ≥ 1 is strictly decreasing in γ.

Consider the case where 0 < q∗ < 1. Again, let ρC = ρ(γ + q∗(1− γ)). Recall that we

have shown dρC/dγ > 0 in the proof of Theorem 3.7. If
∑n−1

i=0 pi(q
∗) is strictly decreasing

in ρC, by the chain rule, it must be strictly decreasing in γ. Hence, it is sufficient to prove

that
∑n−1

i=0 pi(q
∗) is strictly decreasing in ρC. We rewrite

n−1∑
i=0

pi(q
∗) =

n−1∑
i=0

p0(q∗)ρi
C

= p0(q∗)
1− ρn

C

1− ρC

(3.8.2)
=

1− ρn
C

1− ρC

/(
1− ρn

C

1− ρC

+
ρn
C

1− ρC + γρ

)
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=

(
1 +

ρn
C

1− ρC + γρ
· 1− ρC

1− ρn
C

)−1

.

By Eq.(3.21),

ρnC
1− ρC + γρ

·
1− ρC
1− ρnC

=
ρnC (1− ρC)

1− ρnC
·

1

2

(
〈ν〉+

√
〈ν〉2 + 4L(ρC)

)

=
1

2
〈ν〉

ρnC (1− ρC)
1− ρnC

+

√(
1

2
〈ν〉

ρnC (1− ρC)
1− ρnC

)2

+
ρ2nC (1− ρC)2

(1− ρnC )2
L(ρC)

(3.20)
=

1

2
〈ν〉

ρnC (1− ρC)
1− ρnC

+

√(
1

2
〈ν〉

ρnC (1− ρC)
1− ρnC

)2

+
ρ2nC (1− ρC)2

(1− ρnC )2
·
〈ν〉(ρC − 1)ρnC + ν − νρC + ρnC − 1

(1− ρC)2ρnC

=
1

2
〈ν〉

ρnC (1− ρC)
1− ρnC

+

√(
1

2
〈ν〉

ρnC (1− ρC)
1− ρnC

)2

+ 〈ν〉
ρnC (1− ρC)

1− ρnC
+ ρnC

n− nρC + ρnC − 1

(1− ρnC )2
.

It is apparent that
ρn
C
(1− ρC)

1− ρn
C

=
(∑n

i=1
ρ−i
C

)−1

is strictly increasing in ρC. Therefore,

to show
∑n−1

i=0 pi(q
∗) is strictly decreasing in ρC, it suffices to justify ρn

C

n− nρC + ρn
C
− 1

(1− ρn
C
)2

increases in ρC.(
ρn
C

n− nρC + ρn
C
− 1

(1− ρn
C
)2

)′
=

nρn−1
C

(1− ρn
C
)3

(
(n+ 1)ρn

C
− (n− 1)ρn+1

C
− (n+ 1)ρC + n− 1

)
Let χ(ρC) = (n + 1)ρn

C
− (n − 1)ρn+1

C
− (n + 1)ρC + n − 1. Then, χ′(ρC) = (n +

1) (nρn−1
C

+ (1− n)ρn
C
− 1) and χ′′(ρC) = n(n2 − 1)(1− ρC)ρ

n−2
C

. Hence,

 χ′′(ρC) > 0, if 0 < ρC < 1

χ′′(ρC) < 0, if ρC > 1
=⇒

 χ′(ρC) < χ′(1) = 0, if 0 < ρC < 1

χ′(ρC) < χ′(1) = 0, if ρC > 1
=⇒

 χ(ρC) > χ(1) = 0, if 0 < ρC < 1

χ(ρC) < χ(1) = 0, if ρC > 1
.

Thus,

(
ρn
C

n− nρC + ρn
C
− 1

(1− ρn
C
)2

)′
> 0 for ρC > 0 but ρC 6= 1. Moreover, by L’Hôpital’s rule,

lim
ρC→1

(
ρn
C

n− nρC + ρn
C
− 1

(1− ρn
C
)2

)′
= (n2 − 1)/(6n) ≥ 0 with equality only if n = 1 and ρC = 1.

Consequently, ρn
C

n− nρC + ρn
C
− 1

(1− ρn
C
)2

is strictly increasing in ρC, which implies
∑n−1

i=0 pi(q
∗)

is strictly decreasing in γ.

(ii) When q∗ = 1,
n−1∑
i=0

pi(q
∗ = 1) = p0(q∗ = 1)

n−1∑
i=0

ρi =
(

1−ρn
1−ρ + ρn

1−ρ+γρ

)−1
1−ρn
1−ρ , which

clearly is strictly increasing in γ.

Lemma 3.19 For any m = 1, 2, . . . , n − 1,
z + z2 + · · ·+ zm

1 + z + · · ·+ zn
is strictly decreasing in

z ≥ 1.

Proof of Lemma 3.19. Let pi(z) = 1 + z + z2 + · · · + zi, where i = 1, 2, . . . , n.
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Differentiate
pm(z)− 1

pn(z)
with respect to z,

(
pm(z)− 1

pn(z)

)′
=

(
z + z2 + · · ·+ zm

1 + z + · · ·+ zn

)′
=

(
zm+1 − z
zn+1 − 1

)′
=

(m− n)zn+m+1 − (m+ 1)zm + nzn+1 + 1

(zn+1 − 1)2
.

(3.11)

When z = 1, by L’Hôpital’s rule,(
pm(z)− 1

pn(z)

)′∣∣∣∣
z=1

= lim
z→1

(m− n)zn+m+1 − (m+ 1)zm + nzn+1 + 1

(zn+1 − 1)2
=
m(m+ 1− n)

2(n+ 1)
≤ 0,

(3.12)

where the inequality is strict except m = n− 1.

Consider z > 1. Denote the numerator of (3.11) as ψ1(z) = (m − n)zn+m+1 − (m +

1)zm + nzn+1 + 1. Then, ψ1(z = 1) = 0 and

ψ′1(z) = zm−1
[
(m− n)(n+m+ 1)zn+1 − (m+ 1)m+ n(n+ 1)zn−m+1

]
with ψ′1(z = 1) = 0. Moreover, let ψ2(z) = (m− n)(n+m+ 1)zn+1 − (m+ 1)m+ n(n+

1)zn−m+1. Then,

ψ′2(z) = zn−m [(m− n)(n+m+ 1)(n+ 1)zm + n(n+ 1)(n−m+ 1)]

and ψ′2(z = 1) = m(n+ 1)(m+ 1−n) ≤ 0 since m ≤ n− 1. It can be further shown that

ψ′2(z) < 0⇔ z >

(
n(n+ 1−m)

(n−m)(n+ 1 +m)

)1/m

and
n(n+ 1−m)

(n−m)(n+ 1 +m)
≤ 1

since m ≤ n− 1. Therefore, ψ′2(z) < 0 for z > 1. Consequently, for z > 1, we have

ψ′2(z) < 0

ψ2(z = 1) = 0

⇒ ψ2(z) < 0⇒ ψ′1(z) < 0

ψ1(z = 1) = 0

⇒ ψ1(z) < 0,

which indicates (
pm(z)− 1

pn(z)

)′
< 0. (3.13)

Combining (3.12) and (3.13), the derivative of
pm(z)− 1

pn(z)
≤ 0 with equality only when

m = n−1 and z = 1. Since the derivative being equal to 0 at one point does not affect the

strict monotonicity of a function, we conclude that
z + z2 + · · ·+ zm

1 + z + · · ·+ zn
is strictly decreasing
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in z ≥ 1.

Lemma 3.20 Let y∗(ν) be defined as in Corollary 3.3. Then,
z − 〈ν〉

1 + z + · · ·+ zn
decreases

in z ≥ y∗(ν).

Proof of Lemma 3.20. To proceed, we need to first justify a structural property of

y∗(ν).

Lemma 3.21 If ν = ν + i for some i ∈ N, y∗(ν) < y∗(ν).

Proof of Lemma 3.21. First, consider ν ≥ 2. For convenience, we write y∗(ν) and

y∗(ν) as y∗ν and y∗ν respectively. By the definition of y∗(ν) in Corollary 3.3,

n+ 1 +
1

1− y∗ν
− n+ 1

1− (y∗ν)n+1
= ν and n+ 1 + i+

1

1− y∗ν
− n+ 1 + i

1− (y∗ν)
n+1+i

= ν + i.

From the above two equations,

1

1− y∗ν
− n+ 1 + i

1− (y∗ν)
n+1+i

=
1

1− y∗ν
− n+ 1

1− (y∗ν)n+1
= ν − (n+ 1). (3.14)

We now consider the monotonicity of
1

1− y
− k

1− yk
in k. Take the derivative in k,

∂

∂k

(
1

1− y
− k

1− yk

)
=
yk(1− k ln(y))− 1

(1− yk)2
. (3.15)

Recall that lim
y→1

f(y) = n/2 + 1 ≤ ν for ν ≥ 2. Since f(x) increases in y and y∗(ν) is the

root to f(y) = ν, we must have y∗(ν) ≥ 1 for ν ≥ 2. Thus, it is sufficient to focus our

attention to the case y∗(ν) ≥ 1.

For y = 1,

∂

∂k

(
1

1− y
− k

1− yk

)∣∣∣∣
y=1

= lim
y→1

yk(1− k ln(y))− 1

(1− yk)2
= −1

2
< 0.

For y > 1, since ∂
∂y

(
yk(1− k ln(y))− 1

)
= −yk−1k2 ln(y) < 0, then

∂

∂k

(
1

1− y
− k

1− yk

)
=
yk(1− k ln(y))− 1

(1− yk)2
<

1k(1− k ln(1))− 1

(1− yk)2
< 0.
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Therefore,
1

1− y
− k

1− yk
is strictly decreasing in k for y ≥ 1. It follows that

1

1− y∗ν
− n+ 1 + i

1− (y∗ν)
n+1+i

<
1

1− y∗ν
− n+ 1

1− (y∗ν)n+1
. (3.16)

The strict monotonicity of f(y) = n+1+
1

1− y
− n+ 1

1− yn+1
implies that

1

1− y
− n+ 1 + i

1− yn+1+i

is strictly increasing in y ≥ 0. Thus, by (3.14) and (3.16), it must be that y∗ν < y∗ν .

Further, we establish that for 1 ≤ ν < 2, y∗ν < y∗ν+1. Then by the above argument, we

can conclude that y∗ν < y∗ν+1 ≤ y∗ν+i for i ∈ N. When 1 ≤ ν < 2, we can obtain close-form

formulae of y∗ν = ν−1
2−ν = 〈ν〉

1−〈ν〉 and y∗ν+1 =
(ν+1)−2+

√
4−3((ν+1)−2)2

2(3−(ν+1))
=
〈ν+1〉+

√
4−3〈ν+1〉2

2(1−〈ν+1〉) . Note

that 0 ≤ 〈ν〉 = 〈ν+ 1〉 < 1. Under this condition, it can be easily verified that y∗ν < y∗ν+1.

Now, we are ready to show Lemma 3.20. Let r ∈ (0, 1) and write ν such that

bνc = j and 〈ν〉 = r, as νrj . We will verify the monotonicity of
z − 〈ν〉

1 + z + · · ·+ zn
for

z ≥ y∗(ν) in two steps: first, we show for νr2 ∈ (2, 3), i.e., n = 2, the term
z − 〈νr2〉

1 + z + z2
is

strictly decreasing in z ≥ y∗(νr2); second, we show for any given n ≥ 3 and 〈νrn〉 = 〈νr2〉,
z − 〈νrn〉

1 + z + · · ·+ zn
is strictly decreasing in z ≥ y∗(νr2) as well. Then, by Lemma 3.21,

y∗(νrn) > y∗(νr2). As a result, z−〈νrn〉
1+z+···+zn is strictly increasing in z ≥ y∗(νrn). This concludes

(3.23) is strictly decreasing in z ≥ y∗(νrn) when q∗ = 0 and hence SI(q
∗ = 0) is strictly

decreasing in γ.

Step 1. When νr2 ∈ (2, 3), we can analytically solve y∗(νr2) defined in Corollary 3.3

as y∗(νr2) =
〈νr2 〉+
√

4−3〈νr2 〉2

2(1−〈νr2 〉)
. Thus, we only need to show

z − 〈νr2〉
1 + z + z2

is strictly decreasing

in z ≥ y∗(νr2). Differentiating
z − 〈νr2〉

1 + z + z2
with respect to z, we have

(
z − 〈νr2〉

1 + z + z2

)′
=
−z2 + 2〈νr2〉z + 〈νr2〉+ 1

(1 + z + z2)2
< 0⇔ z > 〈νr2〉+

√
〈νr2〉2 + 〈νr2〉+ 1.

We observe that
〈νr2 〉+
√

4−3〈νr2 〉2

2(1−〈νr2 〉)
> 〈νr2〉+

√
〈νr2〉2 + 〈νr2〉+ 1 for 〈νr2〉 ∈ (0, 1). Hence,

z−〈νr2 〉
1+z+z2

is strictly decreasing in z ≥ y∗(νr2) =
〈νr2 〉+
√

4−3〈νr2 〉2

2(1−〈νr2 〉)
and so is SI(q

∗ = 0) in γ.

Step 2. Since
z−〈νr2 〉
1+z+z2

is strictly decreasing for z ≥ y∗(νr2), at a given z ≥ y∗(νr2) we

have(
z − 〈νr2〉

1 + z + z2

)′∣∣∣∣
z=z

=

(
z − 〈νr2〉
p2(z)

)′∣∣∣∣
z=z

=
p2(z)− (z − 〈νr2〉)p′2(z)

p2
2(z)

< 0⇔ 〈νr2〉 < z−p2(z)

p′2(z)
.



www.manaraa.com

Chapter 3. Efficient Information Heterogeneity in a Queue 88

On the other hand, because 〈νrn〉 = 〈νr2〉, thus at the same z,

(
z−〈νrn〉

1+z+···+zn
)′∣∣∣∣

z=z

=
(
z−〈νrn〉
pn(z)

)′∣∣∣∣
z=z

= pn(z)−(z−〈νrn〉)p′n(z)
p2n(z)

<
pn(z)−

(
z−
(
z− p2(z)

p′2(z)

))
p′n(z)

p2n(z)

=
p′2(z)pn(z)−p2(z)p′n(z)

p2n(z)p′2(z)
= 1

p′2(z)

(
p2(z)
pn(z)

)′
< 0,

where the last inequality is because p′2(z) > 0 and

p2(z)

pn(z)
=

1 + z + z2

1 + z + · · ·+ zn
=

1

1 + z + · · ·+ zn
+

z + z2

1 + z + · · ·+ zn

is strictly decreasing in z ≥ 1 when n ≥ 3. Since y∗(νr2) ≥ 1, then z−〈νrn〉
1+z+···+zn is strictly

decreasing in z ≥ y∗(νr2).

3.8.2 Proofs

Proof of Lemma 3.1. We first demonstrate a structural property of pi(q): There exists

q-dependent k ∈ N such that pi(q) is decreasing in q for all 0 ≤ i < k and pi(q) is strictly

increasing in q for all i ≥ k. For γ ∈ [0, 1), λU > 0. By (3.5), it is clear that p0(q) is strictly

decreasing in q. Moreover, since
∑∞

i=0 pi(q) = 1, there must exist some i′ ∈ N such that

pi′(q) is strictly increasing in q. Let k = min{i ∈ N | pi(q) is strictly increasing in q}.
By the balance equations (3.1) and (3.2), since pk(q) is strictly increasing in q, pk+1(q) is

strictly increasing in q, and recursively, pi(q) is strictly increasing in q for all i ≥ k. By

the definition of pk(q), all pi(q)’s for 0 ≤ i < k decrease in q.

Now we use the property above to show the stochastic monotonicity of Q. Fix l ∈ N.

If l ≤ k, P(Q(q) ≥ l) = 1− P(Q(q) < l) = 1− (
∑l−1

i=0 pi(q)) increases in q, because pi(q),

for i ≤ l−1 ≤ k−1, decreases in q by part (i). If l > k, P(Q(q) ≥ l) =
∑∞

i=l pi(q) strictly

increases in q, because pi(q), for i ≥ l > k, strictly increases in q. The result follows by

the definition of the usual stochastic order in Shaked and Shanthikumar (2007). Thus,

for any 0 ≤ q1 < q2 ≤ 1, Q(q1) ≤st Q(q2), which implies that E(Q(q1)) ≤ E(Q(q2)). By

Theorem 1.A.8. in Shaked and Shanthikumar (2007), the inequality must be strict, i.e.,

E(Q(q1)) < E(Q(q2)) for q1 < q2. Since W (q) = E(Q(q))/µ, W (q1) < W (q2).

Proof of Proposition 3.2. The proof follows from similar arguments to Hassin and

Haviv (2003) p. 46.

Proof of Corollary 3.3. By Proposition 3.2(i), no uninformed customers join the queue

if and only if cW (0) ≥ R. Plugging in (3.6), we have cW (0) ≥ R⇐⇒ f(γρ) ≥ ν, where
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f(y) ≡ n+ 1 +
1

1− y
− n+ 1

1− yn+1
, y ≥ 0. The result follows if (1) f(y) is continuous and

strictly increasing and (2) f(y) = ν has a unique solution. Since lim
y→1

f(y) = n/2 + 1, the

continuity is guaranteed. The monotonicity of f(y) results from the fact that

f ′(y) =
1

(1− y)2
− (n+ 1)2yn

(1− yn+1)2
≥ 1

(1− y)2
− (n+ 1)2

(1− yn+1)2

(
1

n+ 1
· 1− yn+1

1− y

)2

= 0,

where the last inequality is due to the inequality of arithmetic and geometric means

yn/2 = n+1
√

1× y × y2 × · · · × yn ≤ 1 + y + y2 + · · ·+ yn

n+ 1
=

1

n+ 1
· 1− yn+1

1− y
.

Note that f ′(y) = 0 only at a single point y = 1. Thus, f(y) is strictly increasing in

y. At last, since f(0) = 1, limy→∞ f(y) = n + 1 and ν ∈ [n, n + 1), n ≥ 1. Therefore,

f(y) = ν has a unique solution y∗(ν) ≥ 0.

Proof of Corollary 3.4. By Proposition 3.2(ii) and (3.6), uninformed customers all

join the queue if and only if

cW (1) ≤ R⇐⇒
(

1

1− (1− γ)ρ

)2

− 〈ν〉
(

1

1− (1− γ)ρ

)
− L(ρ, ν) ≤ 0,

where

L(ρ, ν) ≡
〈ν〉
∑n−1

i=1 ρ
i +
∑n−1

i=1

∑i−1
j=0 ρ

j

ρn
≥ 0.

Note that by (3.3),

0 ≤ P(Q ≥ n) =
∞∑
i=n

pi(q) =
∞∑
i=n

(ρC(q))
n (ρU(q))

i−n p0(q) = (ρC(q))
n (1− ρU(q))

−1 p0(q).

(3.17)

Then (1− ρU(q))
−1 ≥ 0 for all q. In particular, if q = 1, (1− ρU(q = 1))−1 = 1

1−(1−γ)ρ
≥ 0.

Therefore,

cW (1) ≤ R ⇐⇒
(

1

1− (1− γ)ρ

)2

− 〈ν〉
(

1

1− (1− γ)ρ

)
− L(ρ, ν) ≤ 0

⇐⇒ 0 ≤ 1

1− (1− γ) ρ
≤
〈ν〉+

√
〈ν〉2 + 4L(ρ, ν)

2
.

The rest of the proof follows by solving for the condition on γ from the above inequality.

Proof of Theorem 3.5. We first demonstrate how the two critical information levels
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γ∗0(ρ, ν) and γ∗1(ρ, ν) change w.r.t. the offered load ρ. It is obvious that γ∗0(ρ, ν) = y∗(ν)/ρ

is strictly decreasing in ρ. Since limρ→∞ γ
∗
0 (ρ, ν) = 0 and limρ→y∗(ν) γ

∗
0 (ρ, ν) = 1, we claim

0 ≤ γ∗0(ρ, ν) < 1 if and only if ρ > y∗(ν); and γ∗0(ρ, ν) ≥ 1 if and only if ρ ≤ y∗(ν). On the

other hand, it is easy to show that γ∗1(ρ, ν) ≥ 0⇔ ρ ≥ 1− 1/ν ≥ 0 because L(ρ, ν) ≥ 0

and ν ≥ 1. Due to the same fact that L(ρ, ν) ≥ 0,

γ∗1 (ρ, ν) ≤ 1 ⇐⇒ (〈ν〉 (ρ− 1) + 2− ρ) (ρn+1 − 1) ≥ (n+ 1) (ρ− 1) . (3.18)

The inequality always holds if ρ = 1. We then only discuss the case ρ 6= 1. Dividing
both sides by (1− ρ) (1− ρn+1) > 0, (3.18) can be equivalently transformed as

γ∗1 (ρ, ν) ≤ 1⇐⇒ 〈ν〉 (ρ− 1) + 1 + 1− ρ
1− ρ

≤ n+ 1

1− ρn+1
⇐⇒ n+1+

1

1− ρ
− n+ 1

1− ρn+1
≤ ν ⇐⇒ ρ ≤ y∗ (ν) ,

where the last equivalence results from the fact f(y) = n+ 1 + 1
1−y −

n+1
1−yn+1 is increasing

in y.

(i) Consider 0 ≤ ρ < 1− 1/ν. In this case, γ∗1(ρ, ν) < 0. By Corollary 3.4, q∗ = 1 for

all γ ∈ [0, 1].

(ii) Consider 1− 1/ν ≤ ρ ≤ y∗(ν). In this case, γ∗0(ρ, ν) = y∗(ν)/ρ ≥ 1. Thus, q∗ 6= 0

for all γ ∈ [0, 1] by Corollary 3.3. However, γ∗1(ρ, ν) ∈ [0, 1] for 1 − 1/ν ≤ ρ ≤ y∗(ν),

which implies that q∗ = 1 for γ∗1(ρ, ν) ≤ γ ≤ 1. By the uniqueness of q∗, 0 < q∗ < 1 for

0 ≤ γ < γ∗0(ρ, ν).

(iii) Consider ρ > y∗(ν). In this case, 0 ≤ γ∗0(ρ, ν) < 1. Therefore, q∗ = 0 for

γ∗0(ρ, ν) ≤ γ ≤ 1. Then, for 0 ≤ γ < γ∗0(ρ, ν), it is only possible that 0 < q∗ ≤ 1.

However, by the uniqueness of q∗, it can be easily shown, by contradiction, that it must

be that 0 < q∗ < 1 for 0 ≤ γ < γ∗0(ρ, ν).

Proof of Lemma 3.6. We consider two cases separately: (i) q∗(γ) = 0 and (ii) q∗(γ) ∈
(0, 1).

(i) q∗(γ) = 0. By (3.5), p0(γ) =
(
1 +

∑n−1
i=0 (γρ)i+1

)−1
, which is strictly decreasing in

γ.

(ii) q∗(γ) ∈ (0, 1). Since it is difficult to analytically solve q∗ as a function of γ

from cW (q) = R, we have to verify the result indirectly. Specifically, we focus on ρC =

ρ[γ+q∗(1−γ)] instead of q∗ for the monotonicity of p0(γ). Since we are only interested in

the nontrivial cases where ρ > 0 and γ > 0, ρC > 0. It is sufficient to show that
dρC

dγ
> 0

and
dp0

dρC

< 0. Then we can obtain
dp0

dγ
=
dp0

dρC

dρC

dγ
< 0 for q∗ ∈ (0, 1).

First, we verify dρC/dγ > 0. When q∗ ∈ (0, 1), the relationship between ρC and γ is
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determined by the equilibrium equation cW (q∗) =
c

µ

∑∞

i=0
(i+ 1)pi(q

∗) = R. By (3.6),

cW (q∗) =
c

µ

∑∞

i=0
(i+ 1)pi(q

∗)

=
c

µ
p0(q∗)

[
1− ρnC
1− ρC

+
ρC

(1− ρC)2
+ ρnC

(
1− n
1− ρC

− 1

(1− ρC)2
+

1

(1− ρC + γρ)2
+

n

1− ρC + γρ

)]
= R, (3.19)

where p0(q∗) =
(

1−ρnC
1−ρC + ρnC

1−ρC+γρ

)−1

. Define 〈ν〉 = ν − n. Then Eq. (3.19) is equivalent

to
〈ν〉(ρC − 1)ρn

C
+ ν − νρC + ρn

C
− 1

(1− ρC)2ρn
C

=
1− 〈ν〉(1− ρC + γρ)

(1− ρC + γρ)2
, (3.20)

where the right hand side is exactly L(ρC) defined in Corollary 3.4. Recall from Eq.(3.4)
that 1 − ρU(q

∗) = 1 − q∗λU/µ = 1 − ρC + γρ ≥ 0. Thus, Eq.(3.20) gives rise to the only
positive solution to (1− ρC + γρ), which further leads to a unique expression of γ(ρC). In
other words, we know from Eq.(3.20) that

1− ρC + γρ =
−〈ν〉+

√
〈ν〉2 + 4L(ρC)

2L(ρC)
⇐⇒ γ(ρC) =

1

ρ

(
2
(
〈ν〉+

√
〈ν〉2 + 4L(ρC)

)−1
+ ρC − 1

)
. (3.21)

It can be shown that L(ρC) is strictly decreasing in ρC, i.e., dL/dρC < 0 (see Lemma 3.16

in the Online Appendix B). Therefore, γ(ρc) in (3.21) is strictly increasing in ρc, i.e.,

dγ/dρC > 0. Moreover, since the inverse function of a strictly increasing function is also

strictly increasing, dρC/dγ > 0.

Second, we show dp0/dρC < 0. We write p0(q∗) as a function of ρC:

p0(q∗)
(3.5)
=

(
1− ρn

C

1− ρC

+
ρn
C

1− ρC + γρ

)−1
(3.21)
=

[
n−1∑
i=0

ρi
C
+
ρn
C

2
〈ν〉+

√
ρ2n
C
〈ν〉2/4 + ρ2n

C
L(ρC)

]−1

.

Recall that ρC > 0. Hence, if ρ2n
C
L(ρC) is strictly increasing in ρC, we can easily show that

p0(q∗) is strictly decreasing in ρC. Note

ρ2nC L(ρC) = ρnC

〈ν〉(1− ρC)(1− ρnC ) + (1− ρC)
n−1∑
i=0

(1− ρiC)

(1− ρC)2
= ρnC

〈ν〉 n−1∑
i=0

ρiC +

n−1∑
i=1

i−1∑
j=0

ρjC

 , (3.22)

which confirms that ρ2n
C
L(ρC) is indeed strictly increasing in ρC > 0 and implies that

dp0/dρC < 0.

Proof of Theorem 3.7. (i) Recall that λ(q) = µ(1 − p0(q)). Hence, for q∗ ∈ [0, 1),

it is obvious that λ(q∗) strictly increases in γ, since we have shown that p0(q∗) strictly

decreases in γ in Lemma 3.6.
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(ii) If q∗ = 1, ρC(q
∗ = 1) = ρ and ρU(q

∗ = 1) = (1− γ)ρ. Then

λ(q∗ = 1)
(3.7)
=

(
n−1∑
i=0

pi(1)

)
λI + λU

(3.3),(3.5)
=

(
1− ρn

1− ρ
+

ρn

1− (1− γ)ρ

)−1(1− ρn

1− ρ

)
γΛ + (1− γ)Λ

=
−1 + ρ− γρ+ γρn

−1 + ρ− γρ+ γρn+1
Λ.

Differentiating λ(q∗ = 1) w.r.t. γ, we have d
dγ
λ(q∗ = 1) = − ρn(1−ρ)2

(−1+ρ−γρ+γρn+1)2
Λ < 0 for

ρ > 0. Thus, λ(q∗ = 1) is strictly decreasing in γ when q∗ = 1.

Proof of Corollary 3.8. The result immediately follows by combining Theorems 3.5

and 3.7.

Proof of Theorem 3.9. (i) We first verify that dSI(q
∗(γ′))/dγ < 0 for any given γ′ such

that 0 ≤ q∗(γ′) < 1. Lemma 3.17 in the Online Appendix B states that for any such γ′

there exists k ≤ n− 1 such that dpi(q
∗(γ′))/dγ < 0 for 0 ≤ i ≤ k and dpi(q

∗(γ′))/dγ ≥ 0

for k < i < n. Therefore,

dSI (q∗(γ′))

dγ
≤

k∑
i=0

dpi(q
∗(γ′))

dγ

(
R− ck + 1

µ

)
+

n−1∑
i=k+1

dpi(q
∗(γ′))

dγ

(
R− ck + 1

µ

)

=

(
R− ck + 1

µ

) n−1∑
i=0

dpi(q
∗(γ′))

dγ
< 0,

where the last inequality results from Proposition 3.18(i) (see Online Appendix B).

We next show that SI(q
∗) strictly increases in γ for q∗ = 1. Assume that γ1 ≥ γ2,

SI(q
∗(γ2))− SI(q

∗(γ1)) =

n−1∑
i=0

(pi(q
∗(γ2))− pi(q∗(γ1)))

(
R− ci+ 1

µ

)

≤
n−1∑
i=0

(pi(q
∗(γ2))− pi(q∗(γ1)))

(
R− c 1

µ

)
< 0,

where the last inequality is due to Proposition 3.18(ii), i.e.,
∑n−1

i=0 pi(q
∗ = 1) strictly

increases in γ.

(ii) By definition, SU(q
∗) = 0 if 0 ≤ q∗ < 1. Thus, we only need to consider the case

where q∗ = 1,

SU(q
∗ = 1) =

∞∑
i=0

pi(q
∗ = 1)

(
R− ci+ 1

µ

)
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= p0(q∗ = 1)

(
n−1∑
i=0

ρi
(
R− ci+ 1

µ

)
+

∞∑
i=n

ρn((1− γ)ρ)i−n
(
R− ci+ 1

µ

))
.

First, p0(q∗ = 1) =
(

1−ρn
1−ρ + ρn

1−ρ+γρ

)−1

strictly increases in γ. Second, R − c i+1
µ
< 0 for

i ≥ n, which implies ρn((1 − γ)ρ)i−n
(
R− c i+1

µ

)
increases in γ. Therefore, SU(q

∗ = 1)

strictly increases in γ.

Proof of Theorem 3.10. We prove the results case by case for q∗ = 0, q∗ ∈ (0, 1) and

q∗ = 1, respectively. By definition, SU(q
∗) = 0 for all γ if q∗ = 0. By Proposition 3.2(iii),

q∗ ∈ (0, 1) must satisfy that R = cW (q∗), hence, SU(q
∗) = 0 for all γ if q∗ ∈ (0, 1). Then,

SU(q
∗) > 0 can only happen when q∗ = 1.

(a) When q∗ = 0, we have SI(q
∗ = 0) =

(
n−1∑
i=0

pi(0)
(
R− c i+1

µ

))
· γΛ = (g(γρ) + 〈ν〉) ·

µ2/c, where

g(z) ≡ 1 + nz − 〈ν〉(1− z)

1− zn+1
− 1

1− z
.

If n = 1, SI(q
∗ = 0) =

(
− 〈ν〉

1+γρ
+ 〈ν〉

)
µ2

c
, which strictly increases in γ. So does SI + SU

for 1 ≤ ν < 2.

Next, we consider the case of n ≥ 2. By Corollary 3.3, q∗ = 0 if and only if z ≡
γρ ≥ y∗(ν). Moreover, it can be shown that y∗(ν) ≥ 1 for ν ≥ 2: By the definition

of y∗(ν), we have f(y) = ν; note that lim
y→1

f(y) = n/2 + 1 ≤ ν for n ≥ 2; since f(y)

increases in y, y∗(ν) ≥ 1 for ν ≥ 2. Thus, we only need to show the monotonicity of

SI(q
∗ = 0) = (g(z)+ 〈ν〉) ·µ2/c, or equivalently g(z), in z in the domain of z ≥ y∗(ν) ≥ 1.

We rewrite:

g(z) =

∑n−1
m=2 (z + z2 + · · ·+ zm)

1 + z + · · ·+ zn
+

z − 〈ν〉
1 + z + · · ·+ zn

. (3.23)

It can be shown that
z + z2 + · · ·+ zm

1 + z + · · ·+ zn
, m = 1, 2, . . . , n − 1, strictly decreases in z ≥ 1

(see Lemma 3.19 in the Online Appendix B). Then,

• If 〈ν〉 = 0, every term in (3.23) strictly decreases in z ≥ 1, and hence so does SI(q
∗ = 0)

in γ.

• If 〈ν〉 ∈ (0, 1), all terms but the last one in (3.23) are strictly decreasing in z ≥ 1.

Nevertheless, we can show that
z − 〈ν〉

1 + z + · · ·+ zn
decreases in z ≥ y∗(ν). Therefore,

SI(q
∗ = 0) strictly decreases in γ.

(b) When q∗ ∈ (0, 1), again let ρC ≡ ρ(γ + q∗(1− γ)). Then, we have

SI(q
∗) = SI(q) · γΛ =

cΛ

µ
p0(q∗)

(
ν

1− ρnC
1− ρC

− 1− (n+ 1) ρnC + nρn+1
C

(1− ρC)2

)
γ (ρC)

(3.20)
= cρp0(q∗)ρnC L(ρC)γ(ρC).
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It can be further shown10 that

SI(q
∗) = cρp0(q∗)ρn

C
L(ρC)γ(ρC) = 1− νp0(q∗).

By Lemma 3.6, p0(q∗) strictly decreases in γ when q∗ ∈ (0, 1). Therefore, SI is strictly

increasing in γ.

(c) Lastly, when q∗ = 1, ρC = ρ. Then, we have

SI(q
∗ = 1) + SU(q

∗ = 1) =

(
n−1∑
i=0

pi(1)
(
R− c i+1

µ

))
· γΛ +

( ∞∑
i=0

pi(1)
(
R− c i+1

µ

))
· (1− γ)Λ

=
cΛ

µ
p0(1)

[(
n(1− ρ)− (1− ρn)

(1− ρ)2
+ 〈ν〉1− ρ

n

1− ρ

)
+ρn

(
γ − 1

(1− ρ+ γρ)2
+ 〈ν〉 1− γ

1− ρ+ γρ

)]
.

First, p0(q∗ = 1) =
(

1−ρn
1−ρ + ρn

1−(1−γ)ρ

)−1

strictly increases in γ. Second, because SI(q
∗ =

1) + SU(q
∗ = 1) > 0, the term in the square bracket is positive. Moreover, it also strictly

increases in γ, since

∂

∂γ

(
γ − 1

(1− ρ+ γρ)2
+ 〈ν〉 1− γ

1− ρ+ γρ

)
=

1− 〈ν〉+ (1 + 〈ν〉)(1− γ)ρ

(1− ρ+ γρ)3
≥ 0,

where the last inequality results from the fact that 1− ρ+ γρ > 0 implied by (3.17) and

〈ν〉 ∈ [0, 1). As a result, SI(q
∗ = 1) + SU(q

∗ = 1) is strictly increasing in γ.

Proof of Corollary 3.11. The result immediately follows by combining Theorems 3.5

and 3.10.

Proof of Proposition 3.12. Customers evaluate their options, between being informed

after paying a fee f and staying uninformed, and then pick the one that maximizes

their net utility. Note that SI(γ
∗
1) − f = SU(γ

∗
1) = 0. Therefore, no one would have an

incentive to deviate at γ = γ∗1 and thus γ = γ∗1 is an equilibrium. We will show that

at any information level γ 6= γ∗1 , either the informed or the uninformed ones have an

incentive to deviate.

Assume that 0 ≤ γ < γ∗1 . Recall that ρ ∈ [ρ, ρ], 0 < q∗(γ) < 1 and then SU(γ
∗
1) = 0

for 0 < γ < γ∗1 . By Theorem 3.9, 0 = SI(γ
∗
1)− f < SI(γ)− f , with the latter decreasing

in γ. Thus, SU(γ) < SI(γ)− f for 0 < γ < γ∗1 . Then, uninformed customers would have

an incentive to deviate and pay the information access fee f to become informed.

If γ∗1 < γ ≤ 1, it is the informed individuals who want to deviate. To see this, we will

show that SI(γ) − f < SU(γ) for γ∗1 < γ ≤ 1. Note that in this range of γ, q∗ = 1. We

10The derivation can be considered as a special case of Eq. (3.32) in the proof of Theorem 3.15.
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have

SI(γ)− f − SU(γ) =
n−1∑
i=0

pi (q
∗ = 1)

(
R− ci+ 1

µ

)
− f −

∞∑
i=0

pi (q
∗ = 1)

(
R− ci+ 1

µ

)
=

c

µ
· 1− (v − n) (1− ρ+ γρ)

(1− ρ+ γρ)
(

1 + γρ (ρn−1)
ρ−1

)ρn − f.
Since f is a constant, SI(γ)− f −SU(γ) apparently decreases in γ. Thus, for γ∗1 < γ ≤ 1,

SI(γ)− f − SU(γ) < SI(γ
∗
1)− f − SU(γ

∗
1) = 0 ⇐⇒ SI(γ)− f < SU(γ).

Proof of Proposition 3.13. The proof follows the same idea as that of Proposition

3.12. We thus omit the details.

Proof of Theorem 3.14. First, following the same approach in the proof of Lemma 3.1,

it can be shown that the expected sojourn time W (q) in the heterogenous case strictly

increases in q too. As a result, it is easy to further demonstrate that there exists a unique

joining equilibrium q∗ ∈ [0, 1] for uninformed customers. In the case of q∗ = 0 or 1, the

demonstration of the monotonicity of λ(q∗) is parallel to that of the homogeneous reward

case, in which RI = RU = R and cI = cU = c. Thus, for the rest of the proof, we only

consider the cases in which q∗ ∈ (0, 1).

Since λ(q) = µ(1−p0(q)), the monotonicity of λ(q∗) in γ is opposite to that of p0(q∗).

Thus, instead of directly proving that λ(q∗) is strictly increasing in γ, we will show that

p0(q∗) is strictly decreasing in γ in two steps: (i) From the expression of RU = cUW (q),

derive γ as a function of ρC and prove dρC
dγ

> 0; (ii) From the expression of p0(q), prove
dp0
dρC

< 0. Then, combining these two results, we obtain dp0
dγ

= dp0
dρC

dρC
dγ

< 0.

Step (i). Rewrite RU = cUW (q) as

H (ρC) (1− ρC + γρ)2 + (νU − nI) (1− ρC + γρ)− 1 = 0, (3.24)

where

H (ρC) =
(νU − nI) (ρC − 1) ρnI

C
+ νU − νUρC + ρnI

C
− 1

(ρC − 1)2 ρnIC

=
(νU − nI)

∑nI−1
i=0 ρi

C

ρnIC

+

∑nI−1
i=1

∑i−1
j=0 ρ

j
C

ρnIC

.

(3.25)

For further discussion, we derive some properties of H (ρC).

Lemma 3.22 If there exists a q∗ ∈ (0, 1) such that RU = cUW (q∗), it must be that

H (ρC) > 0. Moreover, H (ρC) > 0 if and only if
∑nI−1

i=0 (i+ 1) ρi
C

/∑nI−1
i=0 ρi

C
< νU and

H (ρC) strictly decreases in ρC when H (ρC) > 0.

Proof of Lemma 3.22. Consider (3.24) as a quadratic equation in (1− ρC + γρ).
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• If (νU − nI)
2 + 4H (ρC) < 0, (3.24) has no real roots.

• If (νU − nI)
2 + 4H (ρC) ≥ 0 and H (ρC) < 0, we must have νU − nI < 0 by (3.25) and

both roots of (3.24)
−(νU−nI)±

√
(νU−nI)2+4H(ρC)

2H(ρC)
are negative.

• If (νU − nI)
2 + 4H (ρC) ≥ 0 and H (ρC) = 0, we must have νU − nI < 0 by (3.25) and

(3.24) only has one negative root 1− ρC + γρ = 1
νU−nI < 0, which is invalid because

1− ρC + γρ > 0.

• If H (ρC) > 0, which also implies (νU − nI)
2 + 4H (ρC) ≥ 0, (3.24) has one positive

root
−(νU−nI)+

√
(νU−nI)2+4H(ρC)

2H(ρC)
.

Therefore, if there exists a q∗ ∈ (0, 1) such that RU = cUW (q∗), it must be the last case.

We next consider the monotonicity ofH (ρC). Since
∑nI−1

i=1

∑i−1
j=0 ρ

j
C

=
∑nI−1

i=0 (nI − 1− i) ρi
C
,

rewrite H (ρC) in an alternative form

H (ρC) =

(
νU −

∑nI−1
i=0 (i+ 1) ρi

C∑nI−1
i=0 ρi

C

)∑nI−1
i=0 ρi

C

ρnIC

. (3.26)

Clearly,
∑nI−1

i=0 ρi
C

/
ρnI
C

is positive and strictly decreasing in ρC. By (3.26), H (ρC) > 0 ⇔∑nI−1
i=0 (i+ 1) ρi

C

/∑nI−1
i=0 ρi

C
< νU. Moreover,∑nI−1

i=1 (i+ 1) ρi
C∑n−1

i=0 ρ
i
C

= nI −
∑nI−1

i=1 (ρi
C
− 1) + ρC − 1

ρn
C
− 1

= nI −
∑nI−1

i=1

∑i−1
j=0 ρ

j
C

+ 1∑nI−1
i=0 ρi

C

= nI −
nI−1∑
i=1

(
1−

∑nI−1
j=i ρj

C∑nI−1
j=0 ρjC

)
− 1∑nI−1

i=0 ρi
C

= nI −
nI−1∑
i=1

(
1−

∑nI−i−1
j=0 ρj

C∑i−1
j=0 ρ

j−i
C +

∑nI−i−1
j=0 ρjC

)
− 1∑nI−1

i=0 ρi
C

= nI −
nI−1∑
i=1

1− 1∑i−1
j=0 ρ

j−i
C∑nI−i−1

j=0 ρjC
+ 1

− 1∑nI−1
i=0 ρi

C

, (3.27)

which is strictly increasing in ρC. Consequently, we have that H (ρC) strictly decreases in

ρC when
∑nI−1

i=0 (i+ 1) ρi
C

/∑nI−1
i=0 ρi

C
< νU, which is equivalent to H (ρC) > 0.
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Solving (3.24), we obtain γ as a function of ρC, i.e.,

γ (ρC) =
1

ρ

(
2

(
(νU − nI) +

√
(νU − nI)

2 + 4H (ρC)

)−1

+ ρC − 1

)
.

Since we have shown that H (ρC) strictly decreases in ρC when H (ρC) > 0 in Lemma 3.22,

γ (ρC) then strictly increases in ρC, i.e., dγ
dρC

> 0, which implies dρC
dγ

> 0.

Step (ii). We now show that dp0
dρC

< 0. Write p0 (q∗) as a function of ρC:

p0 (q∗) =

(
ρnIC − 1

ρC − 1
+

ρnIC

1− ρC + γρ

)−1
=

(
ρnIC − 1

ρC − 1
+
ρnIC

2

(
(νU − nI) +

√
(νU − nI)

2
+ 4H (ρC)

))−1
=

(
ρnIC − 1

ρC − 1
+

1

2
ρnIC (νU − nI) +

√
1

4
ρ2nIC (νU − nI)

2
+ ρ2nIC H (ρC)

)−1

=

nI−1∑
i=0

ρiC +
1

2
ρnIC (νU − nI) +

√√√√1

4
ρ2nIC (νU − nI)

2
+ νUρ

nI
C

nI−1∑
i=0

ρi − ρnIC

nI−1∑
i=0

(i+ 1) ρiC

−1

=

1

2
ρnIC (νU − nI) +

nI−1∑
i=0

ρiC +

√√√√(1

2
ρnIC (νU − nI) +

nI−1∑
i=0

ρiC

)2

−
nI−1∑
i=0

(i+ 1) ρiC


−1

. (3.28)

We notice that 1
2
ρnI
C

(νU − nI) +
∑nI−1

i=0 ρi
C
> 0 when H (ρC) > 0. To see this, take the

derivative in ρC,(
1

2
ρnIC (νU − nI) +

nI−1∑
i=0

ρiC

)′

=
1

2
nI (νU − nI) ρ

nI−1
C +

nIρ
nI
C − ρnIC − nIρ

nI−1
C + 1

(ρC − 1)2

>
1

2
nI

(∑nI−1
i=0 (i+ 1) ρiC∑nI−1

i=0 ρiC
− nI

)
ρnI−1
C +

nIρ
nI
C − ρnIC − nIρ

nI−1
C + 1

(ρC − 1)2

=
1

2
nI

nIρC − nI − ρnIC + 1

(ρC − 1) (ρnIC − 1)
ρnI−1
C +

nIρ
nI
C − ρnIC − nIρ

nI−1
C + 1

(ρC − 1)2

=

n2
I

2 ρ
nI−1
C + nI

2 ρ
nI−1
C

∑nI−1
i=0 ρiC −

(∑nI−1
i=0 ρiC

)2

ρnIC − 1

=

(nI−1)nI
2 ρnI−1

C −
nI−2∑
i=0

(i+ 1) ρiC + nI
2 ρ

nI−1
C

nI−1∑
i=1

ρiC − ρnI−1
C

nI−1∑
i=1

(nI − i) ρiC

ρnIC − 1

=
(nI−1)nI

2 ρnI−1
C −

∑nI−2
i=0 (i+ 1) ρiC

ρnIC − 1
+

ρnI−1
C

2 (ρnIC − 1)

nI−1∑
i=1

(2i− nI) ρ
i
C
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=

(nI−1)nI
2 ρnI−1

C −
nI−2∑
i=0

(i+ 1) ρiC

ρnIC − 1
+

ρnI−1
C

2 (ρnIC − 1)

nI−1∑
i=bnI2 c+1

(2i− nI)
(
ρ2i−nI
C − 1

)
ρnI−iC

> 0,

where the first inequality results from the fact that
∑nI−1

i=0 (i+ 1) ρi
C

/∑nI−1
i=0 ρi

C
< νU by

Lemma 3.22 and the last inequality stems from ρC ≥ 0, which is implied by the mono-

tonicity of H (ρC) and H (ρC) > 0. Since 1
2
ρnI
C

(νU − nI) +
∑nI−1

i=0 ρi
C

= 1 at ρC = 0. By the

monotonicity, 1
2
ρnI
C

(νU − nI) +
∑nI−1

i=0 ρi
C
> 0 for ρC ≥ 0, i.e., H (ρC) > 0.

Given the positiveness of 1
2
ρnI
C

(νU − nI) +
∑nI−1

i=0 ρi
C

when H (ρC) > 0, for the ease of

exposition, let

f =

(
1

2
(νU − nI) ρ

nI
C +

nI−1∑
i=0

ρiC

)2

=

(
nIρ

nI+1
C − νUρnI+1

C − nIρ
nI
C + νUρ

nI
C − 2ρnIC + 2

2 (ρC − 1)

)2

(3.29)

and

g =
nI−1∑
i=0

(i+ 1) ρi
C

=
nIρ

nI+1
C
− (nI + 1) ρnI

C
+ 1

(ρC − 1)2 . (3.30)

By (3.28), we can write p0 (q∗) =
(√

f +
√
f − g

)−1
. To prove p0 (q∗) is strictly decreasing

in ρC, it is sufficient to show that
√
f +
√
f − g is a strictly increasing function, i.e.,

f ′√
f

+
f ′ − g′√
f − g

=
f ′√
f
− g′ − f ′√

f − g
> 0.

Apparently, the inequality holds for f ′ ≥ g′. We next consider the case g′ > f ′.

Note that f is strictly increasing in νU and g is independent of νU. One can also readily

show that f ′√
f

and − g′−f ′√
f−g are both strictly increasing in νU. Thus, if f ′√

f
− g′−f ′√

f−g > 0 for

νU =
∑nI−1

i=0 (i+ 1) ρi
C
�
∑nI−1

i=0 ρi
C
, it must be true for all

∑nI−1
i=0 (i+ 1) ρi

C

/∑nI−1
i=0 ρi

C
< νU

by the monotonicity. As a result, p0 (q∗) will be strictly decreasing in ρC, i.e., dp0
dρC

< 0.

By the above argument, we only need to justify that f ′√
f
− g′−f ′√

f−g > 0 for νU =∑nI−1
i=0 (i+ 1) ρi

C
�
∑nI−1

i=0 ρi
C

to complete the proof. Note that

g′ =
n2

I
ρnI−1
C

+ nIρ
nI−1
C
− 2

∑nI−1
i=0 (i+ 1) ρi

C

(ρC − 1)
.
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Moreover, at νU =
∑nI−1

i=0 (i+ 1) ρi
C

/∑nI−1
i=0 ρi

C
,

f =

(
ρ2nI
C

+ nIρ
nI+1
C
− 3ρnI

C
− nIρ

nI
C

+ 2

2 (ρC − 1) (ρnIC − 1)

)2

,

and

f ′ =
(nIρ

nI+1
C
− 3ρnI

C
+ ρ2nI

C
− nIρ

nI
C

+ 2)
(
nIρ

nI−1
C

∑nI−1
i=0 ρi

C
− 2

(∑nI−1
i=0 ρi

C

)2
+ n2

I
ρnI−1
C

)
2 (ρC − 1) (ρnIC − 1)2 .

Thus, evaluated at νU =
∑nI−1

i=0 (i+ 1) ρi
C

/∑nI−1
i=0 ρi

C
,

f ′√
f
− g′ − f ′√

f − g
=

2

(ρC − 1)
2

(ρnIC − 1)(∑nI−1
i=0 ρiC − nI

) (nIρ
nI−1
C −

nI−1∑
i=0

ρiC + nI −
nI−1∑
i=0

ρiC

)

=
2

(ρC − 1)
2

(ρnIC − 1)(∑nI−1
i=0 ρiC − nI

) (ρC − 1)

nI−2∑
i=0

(2i+ 2− nI) ρ
i
C

=
2

(ρC − 1)
2

(ρnIC − 1)(∑nI−1
i=0 ρiC − nI

) (ρC − 1)

nI−2∑
i=bnI2 c+1

(2i+ 2− nI)
(
ρ2i+2−nI
C − 1

)
ρnI−i−2C

> 0.

Proof of Theorem 3.15. The social welfare for each customer segment is

SI (q∗) =

[
nI−1∑
i=0

pi (q∗)

(
RI − cI

i+ 1

µ

)]
· γΛ and SU (q∗) =

[
q∗
∞∑
i=0

pi (q∗)

(
RU − cU

i+ 1

µ

)]
· (1− γ) Λ

Analogous to Theorem 4, we discuss the following cases in order: q∗ = 0, q∗ ∈ (0, 1), and

q∗ = 1.

When q∗ = 0, ρC = γρ. Since uninformed customers do not join, SU (q∗) = 0 and total
social welfare is identical to informed individuals’ contribution

SI (q∗ = 0) =

[
nI−1∑
i=0

pi (0)

(
RI − cI

i+ 1

µ

)]
· γΛ

=

(
1− (γρ)

nI

1− γρ
+ (γρ)

nI

)−1(
RI

1− (γρ)
nI

1− γρ
− cI
µ

1− (nI + 1) (γρ)
nI + n (γρ)

nI+1

(1− γρ)
2

)
· γΛ.

Notice that SI(q
∗ = 0) is independent of RU. Thus, we can apply the same discussion in

the proof of Theorem 4(i) to show that SI (q∗ = 0) + SU (q∗ = 0) strictly decreases in γ.

When q∗ ∈ (0, 1), the social welfare yielded by uninformed customers equals zero as
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well, i.e., SU (q∗) = 0. Thus, we only need to consider SI (q∗).

SI (q∗) =

[
nI−1∑
i=0

pi (q∗)

(
RI − cI

i+ 1

µ

)]
· γΛ

= p0 (q∗)

(
RI

1− ρnIC

1− ρC
− cI
µ

1− (nI + 1) ρnIC + nρnI+1
C

(1− ρC)2

)
· γΛ

= cIp0 (q∗)

(
νI

1− ρnIC

1− ρC
− 1− (nI + 1) ρnIC + nIρ

nI+1
C

(1− ρC)2

)
· ργ (ρC)

= cIρ
nI
C

(
H (ρC)−

(νU − νI)
∑nI−1

i=0 ρiC
ρnIC

)
· p0 (q∗) · ργ (ρC)

= cIρ
nI
C H (ρC) · p0 (q∗) · ργ (ρC)− cI (νU − νI)

nI−1∑
i=0

ρiC · p0 (q∗) · ργ (ρC)

= cI

(
1− (νU − νI)

∑nI−1
i=0 ρiC

ρnIC H (ρC)

)
ρnIC H (ρC) · p0 (q∗) · ργ (ρC)

= cI

1− (νU − νI)

(
νU −

∑nI−1
i=0 (i+ 1) ρiC∑nI−1

i=0 ρiC

)−1
 ρnIC H (ρC) · p0 (q∗) · ργ (ρC)(3.31)

We first observe that ρnI
C
H (ρC) · p0 (q∗) · ργ (ρC) strictly increases in ρC. Substitute p0(q∗)

with (3.28),

ρnI
C
H (ρC) p0 (q∗) ργ (ρC)

= ρnI
C
H (ρC)

2

(
(νU − nI) +

√
(νU − nI)

2 + 4H (ρC)

)−1

+ ρC − 1

1−ρnIC
1−ρC +

ρ
nI
C

2

(
(νU − nI) +

√
(νU − nI)

2 + 4H (ρC)

)
=

(
2ρnI

C
H (ρC) + (νU − nI) ρ

nI
C
H (ρC) (ρC − 1) + ρnI

C
H (ρC) (ρC − 1)

√
(νU − nI)

2 + 4H (ρC)

)
×(

(νU − nI)
1− ρnI

C

1− ρC

+ (νU − nI)
2 ρnI

C
+ 2ρnI

C
H (ρC) +(

1− ρnI
C

1− ρC

+ (νU − nI) ρ
nI
C

)√
(νU − nI)

2 + 4H (ρC)

)−1

=

1− νU
(νU − nI) +

√
(νU − nI)

2 + 4H (ρC)

2ρnIC H (ρC) +
(

1−ρnIC
1−ρC + (νU − nI) ρ

nI
C

)(
(νU − nI) +

√
(νU − nI)

2 + 4H (ρC)

)

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=

1− νU

1−ρnIC
1−ρC +

ρ
nI
C

2

(
(νU − nI) +

√
(νU − nI)

2 + 4H (ρC)

)


= 1− νUp0 (q∗) . (3.32)

We have already demonstrated that p0 (q∗) strictly decreases in ρC in the proof of Theorem

3.14. Therefore, ρnI
C
H (ρC) · p0 (q∗) · ργ (ρC) also strictly increases in ρC.

Next, we consider the monotonicity of the term in the square bracket of (3.31). Recall

that
∑nI−1

i=0 (i+ 1) ρi
C
�
∑nI−1

i=0 ρi
C

strictly increases in ρC as shown in the proof of Theorem

5. Then,

• If νU ≤ νI, 1− (νU − νI)
(
νU −

∑nI−1
i=0 (i+1)ρiC∑nI−1
i=0 ρiC

)−1

is increasing in ρC. In this case, SI (q∗)

is increasing in ρC. Due to the fact that dρC
dγ

> 0, we have SI (q∗) is increasing in γ.

• If νU > νI, 1− (νU − νI)
(
νU −

∑nI−1
i=0 (i+1)ρiC∑nI−1
i=0 ρiC

)−1

is decreasing in ρC. Then SI (q∗) might

be unimodal in ρC, which leads to that SI (q∗) might be unimodal in γ.

When q∗ = 1, ρC = ρ. The total social welfare is

SI (q∗) + SU (q∗) =

[
nI−1∑
i=0

pi (1)

(
RI − cI

i+ 1

µ

)]
· γΛ +

[ ∞∑
i=0

pi (1)

(
RU − cU

i+ 1

µ

)]
· (1− γ) Λ

=

[
nI−1∑
i=0

pi (1)

(
RI − cI

i+ 1

µ

)]
· Λ +

[ ∞∑
i=nI

pi (1)

(
RU − cU

i+ 1

µ

)]
· (1− γ) Λ

=
cIΛ

µ
p0 (1)

(
RIµ

cI
· 1− ρnI

1− ρ
− 1− (nI + 1) ρnI + nIρ

nI+1

(1− ρ)2

)
+
cUΛ

µ
p0 (1) ρnI

(
RUµ

cU
· 1

1− ρ+ γρ
− nI (1− ρ+ γρ) + 1

(1− ρ+ γρ)2

)
(1− γ)

=
cIΛ

µ
p0 (1) νI

1− ρnI
1− ρ

− cIΛ

µ
p0 (1)

1− (nI + 1) ρnI + nIρ
nI+1

(1− ρ)2

+
cUΛ

µ
p0 (1) ρnI

(
νU

1− ρ+ γρ
− nI (1− ρ+ γρ) + 1

(1− ρ+ γρ)2

)
(1− γ)

=
cIΛ

µ
p0 (1)

[
nI (1− ρ)− (1− ρnI)

(1− ρ)2 + 〈νI〉
1− ρnI
1− ρ

]
+
cUΛ

µ
p0 (1) ρnI

[
(νU − nI) (1− γ)

1− ρ+ γρ
− (1− γ)

(1− ρ+ γρ)2

]
=

Λ

µ
p0 (1)

[
cI
nI (1− ρ)− (1− ρnI)

(1− ρ)2 + cI 〈νI〉
1− ρnI
1− ρ

+ cUρ
nI (νU − nI) (1− γ)

1− ρ+ γρ
− cUρnI

(1− γ)

(1− ρ+ γρ)2

]
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Note that p0(q∗ = 1) =
(

1−ρnI
1−ρ + ρnI

1−ρ+γρ

)−1

strictly increases in γ and the term in the

bracket is positive (since SI (q∗) + SU (q∗) > 0 and p0(q∗ = 1) > 0). Therefore, we only

need to explore the monotonicity of (νU−nI)(1−γ)
1−ρ+γρ

− (1−γ)

(1−ρ+γρ)2
w.r.t γ. Take the derivative,

∂

∂γ

(
(νU − nI) (1− γ)

1− ρ+ γρ
− (1− γ)

(1− ρ+ γρ)2

)
=

1 + ρ− γρ− (νU − nI) (1− ρ+ γρ)

(1− ρ+ γρ)3

Note that (1− γ) ρ is the workload caused by uninformed customers. Due to the

fact that uninformed customers join the queue with probability 1, the server must have

enough capacity to handle all of them, i.e., (1− γ) ρ < 1 ⇔ 1− ρ+ γρ ≥ 0. Thus,

• If (νU − nI) ≤ 1+ρ−γρ
1−ρ+γρ

, we have (νU−nI)(1−γ)
1−ρ+γρ

− (1−γ)

(1−ρ+γρ)2
is increasing in γ. Then,

SI (q∗ = 1) + SU (q∗ = 1) is increasing in γ.

• If (νU − nI) >
1+ρ−γρ
1−ρ+γρ

, we have (νU−nI)(1−γ)
1−ρ+γρ

− (1−γ)

(1−ρ+γρ)2
is decreasing in γ. In this

case, SI (q∗ = 1) + SU (q∗ = 1) might be unimodal in γ.
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Chapter 4

Capacity Allocation under

Endogenous Arrivals

4.1 Introduction

Models of congestion-prone service systems, such as call centers and hospital emergency

departments, usually assume that customers arrive exogenously, specifically independent

of the wait time conditions at a service facility. However, delays at facilities are often

time-varying (Gans et al. 2003, Akşin et al. 2007). For example, many call centers are

most congested in the late morning and/or mid afternoon, so customers are more likely

to experience long service delays during these times (Brown et al. 2005, Ibrahim and

L’Ecuyer 2013). The temporary burst in arrivals may reflect most customers’ time-of-

service (TOS) preferences. On the other hand, some customers may be flexible in TOS

but more sensitive to service delays. It seems plausible to expect that these customers

may change their calling times in order to avoid long waiting times. Behavioral studies

based on laboratory experiments have revealed that people do adjust their arrival times

according to anticipated delays at different times (Rapoport et al. 2004, Seale et al.

2005, Stein et al. 2007). The same studies also demonstrate that people appear to be

heterogeneous in their sensitivities to delays.

In light of customers’ tendency to adjust arrivals in exchange for shorter delays, service

providers may want to exploit the opportunity to reduce demand variability by informing

customers about the time windows with shorter delays. For example, St. Mary’s General

Hospital (SMGH) in Kitchener, Canada, posts emergency department (ED) wait time

information online. From their website1, potential patients can learn the number of

1http://www.smgh.ca/ed-wait-times
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people waiting, the number being treated in the emergency department, the estimated

current wait times, and, in particular, the predicted wait times over the next six hours.

According to the hospital President Don Shilton, “It (predicted wait time information)

helped them (patients) make informed decisions about when to come to the ED...”2

Beyond using delay information to influence patients’ arrival process, providers also

account for demand variability in their capacity decisions. This raises an important yet

less studied research question: What is the best capacity allocation policy when cus-

tomers’ arrival time decisions account for intertemporal fluctuations in service delays?

The intra-day arrivals to call centers or the SMGH ED may, to a certain extent, result

from customer responses to fluctuating service delays over the day. These intra-day ser-

vice delays in turn depend on the provider’s intertemporal capacity decisions. Therefore,

customer arrivals become endogenous, that is, they depend on the capacity allocation.

Previous studies on service capacity management, however, ignore this underlying endo-

geneity between capacity allocation and the arrival process. In this paper, we incorporate

this endogeneity and investigate the intertemporal capacity allocation problem when cus-

tomer arrivals are (partially) responsive to facility delays over time.

We model customers’ self-interested TOS decisions over several consecutive discrete

periods. Our model allows customer heterogeneity in both TOS preferences and delay

sensitivities. In contrast to other work on customer strategic arrivals that takes capacity

to be fixed (Glazer and Hassin 1983, Lariviere and Van Mieghem 2004, Honnappa and

Jain 2015), we focus on the interplay between customers’ utility-maximizing TOS choices

and the provider’s intertemporal capacity decisions. We consider the provider’s problem

in two models: one under limited total capacity, the other with a time-varying capacity

cost. The former applies to industries with inadequate supply of key resources, such as

health care services, where shortage of physicians is perceived as one of the main problems

(Fortune 2014) and the main concern is to efficiently utilize available capacity. The latter

model adds a cost perspective to capacity management and reflects the practical reality

that operating cost often oscillates over the day (e.g., Gurvich et al. 2014).

Although our model focuses on customers’ intertemporal TOS choices at a single fa-

cility, it can also represent customers’ server (routing) choices at a given time among

multiple facilities. For example, health authorities in the city of Vancouver create an

online real-time ED waiting time dashboard3, attempting to efficiently use the region’s

hospital resources and improve patient flow. The system lists waiting times of five bus-

2http://www.smgh.ca/st-marys-real-time-wait-time-website-wins-national-innovation-

prize
3http://www.edwaittimes.ca

http://www.smgh.ca/st-marys-real-time-wait-time-website-wins-national-innovation-prize 
http://www.smgh.ca/st-marys-real-time-wait-time-website-wins-national-innovation-prize 
http://www.edwaittimes.ca
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iest emergency departments in the region and displays the locations of these emergency

departments on the city map. Potential patients determine the ED to visit, based on

both the traveling distances and the posted wait times.

We show that for any given capacity allocation, there exists a customer TOS choice

equilibrium. There may be multiple TOS choice equilibria, but the total customer arrival

rate to a particular period is unique. Taking into account customer equilibrium TOS

choices, we then analyze the service provider’s capacity allocation/investment decisions,

with the objective to maximize the total system utility. We find that under the optimal

capacity allocation, any TOS equilibrium is in pure strategies, unlike when capacity

allocation is fixed.

In terms of the provider’s ability to achieve the system optimal result through capacity

control alone, we have two findings. On the one hand, we show that when the total

capacity (e.g., the number of physician shifts) is fixed and customers do not balk, then

the ability to adjust the capacity allocation effectively avoids system efficiency losses due

to customers’ self-interested decisions. On the other hand, we demonstrate that capacity

management alone cannot align the incentives of the system with those of individual

customers when monetary cost also plays a role, as in our time-varying cost model.

In that case, a pricing scheme has to be imposed to give customers the incentive to

implement the socially efficient outcome. Specifically, the provider needs to charge for

TOS such that price differences across time periods equal the corresponding capacity cost

differences. Moreover, setting prices equal to the capacity costs also induces the system

optimal arrival rates.

Section 4.2 briefly reviews the related literature. Section 4.3 presents the model.

Section 4.4 establishes existence of the customer TOS choice equilibrium. Section 4.5

analyzes the capacity allocation problems. Section 4.6 provides concluding remarks.

4.2 Literature Review

Studies of customers’ rational responses to service delays have been active in service op-

erations since the pioneer work of Naor (1969), which considers customer joining/balking

decisions in the presence of congestion. Hassin and Haviv (2003) provide a comprehen-

sive survey on numerous extensions to Naor (1969). While waiting in the line, customers

may change their minds and abandon from the queue. A stream of research investigates

the abandonment behavior theoretically (e.g., Mandelbaum and Shimkin 2000, Shimkin

and Mandelbaum 2004) or empirically (e.g., Akşin et al. (2013)). Instead of leaving for

good after balking or abandoning, customers may also try to seek service again at later
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times. There is a rich literature on retrial models and their implications for operational

decisions (e.g., Mandelbaum et al. 2002, Aguir et al. 2008, Cui et al. 2014, de Véricourt

and Zhou 2005, Armony and Maglaras 2004a,b).

None of the aforementioned papers on customer strategic behavior explicitly model

how a customer decides at which time she should visit a facility in order to shorten

anticipated delays. The earliest work that explicitly considers the equilibrium arrival

time decisions of customers dates back to the seminal bottleneck model of Vickrey (1969).

Arnott et al. (1993) extend the analysis to elastic demand and examine its economic

implications. We refer to de Palma and Fosgerau (2011), Small (2015) and references

therein for a comprehensive review and discussion of dynamic traffic congestion models.

However, these traffic models typically tend to ignore the system stochasticity, which

is one of the challenges in service operations. Glazer and Hassin (1983) appear to be

the first to consider a stochastic model; they model strategic arrival decisions to a fa-

cility that opens at a fixed time and remains open thereafter. Customers are allowed

to queue before the facility opens and aim to minimize their expected delay costs. The

authors characterize the system transient behavior by deriving the customer arrival rate

in equilibrium. Hassin and Kleiner (2010) reconsider the problem for the case where early

arrivals are forbidden. Lariviere and Van Mieghem (2004) study a similar problem in

which customers find congestion costly and seek service when the facility is underutilized.

They work in discrete time and show that the equilibrium arrival process converges to a

Poisson process. Juneja and Jain (2009) consider the concert game, a scenario in which

all customers prefer the service as soon as the facility is open. Examples of such scenarios

include line-up for concerts, games, or Black Friday sales. While early appearances incur

waiting cost, late arrivals also yield opportunity cost. Juneja and Jain (2009) derive

the equilibrium arrival strategy of homogeneous customers and measure the system ef-

ficiency loss due to customer self-interested decisions. Jain et al. (2011) and Honnappa

and Jain (2015) extend the analysis to multiple customer classes and queueing networks,

respectively.

We distinguish our work from the above papers on strategic arrivals in that we study

the interaction between capacity decisions and customer choice behaviors. Prior studies

all treat service capacity as a fixed constant over time, whereas we are interested in

optimal intertemporal capacity allocation to achieve system efficiency while accounting

for customer responses in the timing of arrivals.

Our research is also related to studies on customer server choices, because we can

regard each time period as a distinct facility. In contrast to our model, many papers

in this line of research assume server-independent valuations, i.e., customers are only
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sensitive to delays, sometimes prices as well, but do not discriminate among servers that

are actually used. Bell and Stidham (1983) study the system equilibrium under customer

self-interested server choices when all service rates are given. They show that individual

choices do not result in socially optimal outcomes. Recent developments on the price

of anarchy in selfish routing games provide measurements on the efficiency loss in more

general settings (e.g., Roughgarden and Tardos 2002, Roughgarden 2005 and references

therein, Haviv and Roughgarden 2007). It has also been widely studied how competing

firms strategically determine their control variables in the presence of customer choices.

Luski (1976) and Levhari and Luski (1978) discuss firms’ price decisions in duopoly

while service rates are exogenous. Alternatively, Kalai et al. (1992) consider duopoly

firms’ capacity choices. In the selfish routing literature, Acemoglu et al. (2009) and

Johari et al. (2010) allow competing providers to control both prices and capacities.

While server-independent valuations are applicable in certain settings, e.g., selfish

routing in communication networks, customers do have preferences on servers by which

they are being served in other scenarios, i.e., service valuations can be server-dependent.

Allon and Federgruen (2007) model the demand rates to oligopoly firms as aggregate

functions of prices and expected delays, using attraction models and similar reduced-

form customer choice models. Unlike in our model, incentive-compatibility issues are

therefore absent in theirs, and they focus on competitive equilibria, rather than on system

optimality. In contrast to the above papers, the work of Veeraraghavan and Debo (2009,

2011) assumes that customers are uncertain about the quality of (their valuation for) the

servers. They characterize customers’ equilibrium server choices, accounting for customer

inference on product quality from queue lengths. Finally, customers’ service valuations

may be affected by traveling distance to facility. The literature on location models

focuses on the design of service networks by selecting facility locations. We refer to

Berman and Krass (2015) for an extensive review of stochastic location models with

congestion. This stream of research assumes that the capacity is fixed for each location.

We find that the ability to set capacity endogenously induces customers of the same

type to use a pure strategy in choosing their time-of-service. This contrasts with the

result in the location literature that only mixed strategy equilibria are guaranteed under

self-interested decisions as illustrated in Berman and Krass (2015).

4.3 Customer Characteristics and Time-of-Service

A service provider operates a facility with a first-in first-out (FIFO) discipline over a

finite time horizon, e.g., a call center that is open over a certain time window during a
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day. We divide the time horizon during which the service is available into n consecutive

non-overlapping short periods. For example, in call centers, a time interval of 15 or 30

minutes in length is often used for statistical purposes (Brown et al. 2005, Gans et al.

2003). For period j, j = 1, . . . , n, there is a stream of base customers, who are extremely

sensitive to time-of-service (TOS). They only consider service in period j valuable and

are not willing to be served in other time periods. Base customers of period j visit the

facility according to a Poisson process at a rate of Λb
j. Their service valuation is vbj and a

linear delay cost is incurred at a rate of cbj per unit time. Therefore, a base customer of

period j receives an expected surplus of vbj − cbjWj upon completion of the service, where

Wj is the expected waiting time, including service time, in period j.

In addition to the base customers, there is also a stream of strategic customers, who

may have their preferences on TOS but are also willing to consider services in alternative

periods in exchange for shorter delays. We classify strategic customers by their service

valuation vector and unit delay cost vector. Type i strategic customers, who request

the service at a total rate of Λi, value period j’s service vij and their unit delay cost in

period j is cij. We can treat the order of vij’s as a representation of type i strategic

customers intrinsic TOS preferences in the absence of delays. For instance, v11 > v12

indicates that type 1 strategic customers prefer service in period 1 than that in period

2 if delays in both periods are not taken into account. Two strategic customers are

of the same type if and only if their valuations and unit delay costs are identical in

all periods. Therefore, vi = (vi1, . . . , vin) and ci = (ci1, . . . , cin) characterize type i

strategic customers. We assume that there are m types of strategic customers. For ease

of exposition, we sometimes omit the word “strategic” when refer to type i strategic

customers if it is clear that we are not referring to base customers.

Our strategic customer model is reasonably general. It covers many common settings

as special cases. For example, it can capture customer heterogeneous valuations with

time-invariant delay cost or similarly heterogeneous delay costs with a constant valuation.

In contrast to base customers, who only visit specific periods, strategic customers

choose their TOS, i.e., which period to join for the service. All strategic customers

simultaneously choose their TOS and visit the facility at a random instant during that

period. Hence, their TOS decisions form an arrival rate matrix Λ, where Λij represents

the arrival rate of type i customers who choose to join period j. As a result, total arrivals

to period j include not only base customers but also strategic customers who choose to

be served in period j, i.e.,

λj(Λ) = Λbj +
m∑
i=1

Λij for j = 1, . . . , n. (4.1)
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Further, let Cj(λj) denote the total unit delay cost for period j at an arrival rate λj.

Then, we have

Cj(λj) = cbjΛ
b
j +

m∑
i=1

cijΛij for j = 1, . . . , n. (4.2)

Let µ = (µ1, . . . , µn) represent the intertemporal service rate vector. We further

assume the queueing dynamic in each period as an M/M/1 system, i.e., the interarrival

times and service times in period j are exponentially distributed with means 1/λj and

1/µj respectively. We focus our attention on a single server system for tractability. As

a first step in understanding the interaction between capacity allocation and customer

intertemporal arrivals, the simplicity of an M/M/1 system enables us to analytically

derive key properties of the optimal staffing and customer routing decisions.

We also make the simplifying assumption that time periods are independent. That is,

we ignore the transient effect that may occur as arrival rates may change from one period

to the next. Therefore, we only consider the system performances in steady states and

period j’s expected waiting time Wj(Λ) = (µj − λj)−1, where the arrival rate matrix Λ

and λj are defined in (4.1). Our model can be considered as an approximation for a non-

stationary system. Previous literature (e.g., Green and Kolesar 1991, Green et al. 2001)

suggests that such approximations, applying stationary models to non-stationary sys-

tems, performs well when the service times are short and the quality-of-service standard

is high, such as services provided by call centers. In fact, many commercial call-center-

management softwares are implemented based on these approximations (Green et al.

2001). On the other hand, such approximations may not perform well for cases with

medium to long service times or systems that are overloaded for extensive period of time

(Green et al. 2007). This drawback of the current model inspires future research for more

sophisticated frameworks.

Upon completion of the service, a base customer of period j and a type i customer

who joins period j expect to receive net utilities

U b
j (Λ) = vbj − cbjWj(Λ) and Uij(Λ) = vij − cijWj(Λ),

respectively. A strategic customer’s objective is to choose her arrival period or TOS that

maximizes her expected utility. For convenience, we first assume strategic customers

cannot balk and we shall relax this assumption in Sections 4.5.3.2 and 4.5.4.2.

Lastly, we assume all parameters of the game, namely arrival rates, service speeds,

and the parameters of all customers’ utility functions, are common knowledge.

As we mentioned in the introduction, our model can also be interpreted as a rep-
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resentation of interspatial choices over facility locations. In the example of Vancouver

hospital wait time program, EDs are spatially substitutable for patients. In this case,

facility locations of hospitals, indexed by j, are parallel to the time periods in the TOS

model. Base customers may represent patients sufferring from critical conditions, such

as severe chest pains or breathing problems. These patients require immediate medi-

cal treatments and thus they would almost certainly visit the closest emergency room.

Likewise, strategic customers represent the patients with noncritical conditions, such as

ankle sprains. Although nearby emergency rooms save travel distances, long wait times

at these facilities may encourage potential patients to visit other emergency rooms as

long as delay information of all facilities is publicly available. Accordingly, we can define

patients from the same neighborhood with the same delay sensitivity as the same type.

For a type i patient, her expected utility of visiting facility at location j equals vij−ciWj,

where the service valuation vij might be a function of the distance to facility location

j, and the unit delay cost ci is likely to be invariant regardless of locations. Finally,

patient emergency room choices constitute arrival processes at all facilities, which can

be captured by the arrival rate matrix Λ. This example demonstrates how we can apply

our customer choice model to represent facility substitutability with server-dependent

valuations. However, for consistency, we concentrate on intertemporal choices of TOS in

this paper.

4.4 Equilibrium of Time-of-Service Choices

Every strategic customer seeks service in the time period that maximizes her expected net

utility Uij(Λ). In this TOS choice game, each strategic customer, or player, is nonatomic

in the sense that there are a large number of players, each controlling a negligible frac-

tion of the overall arrivals. For this reason, we are not interested in strategic customer

individual choices, but focus on the system intertemporal arrivals at an aggregate level.

Specifically, we are interested in equilibrium arrival rate matrices Λ∗ that result from

choices of all strategic customers and capture the system demand as a whole. We first

define the TOS equilibrium and show its existence. Although there might be multiple

equilibria, we prove that all equilibria yield the same arrival rate vector λ∗ = (λ∗1, . . . , λ
∗
n).

Definition 1 (Equilibrium of Time-of-Service choices) Assume capacities in all pe-

riods are given, i.e., µ = (µ1, . . . , µn) is fixed. An arrival rate matrix Λ∗ is an equilib-

rium if and only if the following two conditions hold for any strategic customer of type i,

i = 1, . . . ,m,
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(EC1) vij − cijWj(Λ
∗) = vij′ − cij′Wj′(Λ

∗) for all j and j′ with Λ∗ij,Λ
∗
ij′ > 0, and

(EC2) vij − cijWj(Λ
∗) ≥ vij′ − cij′Wj′(Λ

∗) for all j and j′ with Λ∗ij > 0 and Λ∗ij′ = 0.

Our definition of TOS equilibrium adopts Wardrop’s first principle in Wardrop and

Whitehead (1952), which is commonly used for the prediction of traffic patterns in trans-

portation networks. By (EC1), a strategic customer is indifferent among time periods

that have been chosen by the cohort of her type. Moreover, (EC2) indicates that she

also has no incentive to deviate from her current choice to a period that have not been

chosen by the cohort of her type, since the deviation would not result in higher utility.

In other words, in equilibrium, for strategic customers of the same type, expected net

utilities in all chosen periods are equal, and no less than those in any unchosen period.

The next proposition confirms the existence of TOS equilibria.

Proposition 4.1 (Existence of Time-of-Service Equilibrium) Assume the capac-

ity vector µ = (µ1, . . . , µn) is given. There must exist at least one equilibrium arrival

rate matrix Λ∗.

Showing the existence of an equilibrium Λ∗ is equivalent to finding an arrival rate

matrix Λ that satisfies (EC1) and (EC2) for all strategic customers. We use a technique

developed by Beckmann et al. (1956) to verify the result. Let us consider the optimal

solution to the following ancillary problem

max
Λ

n∑
j=1

m∑
i=1

∫ m∑
t=1

Λtj

0
(vij − cijWj(x)) dx (4.3)

s.t.

n∑
j=1

Λij = Λi, i = 1, . . . ,m, and Λij ≥ 0,

where Wj(x) =
(
µj − Λb

j − x
)−1

. Apparently, this problem has a convex feasible region.

We can further verify that the objective function is concave in decision variable Λij’s,

i = 1, . . . ,m and j = 1, . . . , n. Therefore, the ancillary problem (4.3) is convex and

admits at least one optimal solution. By invoking the Kuhn-Tucker conditions, we show

that (EC1) and (EC2) are achieved at optimality. In other words, any optimal solution

to the ancillary problem (4.3) corresponds to an equilibrium arrival rate matrix Λ∗.

The validity of Proposition 4.1 does not rely on the assumption of an M/M/1 system.

The TOS equilibrium exists for many other queueing systems, e.g., Erlang-C systems

which are widely used in call center modeling.

We note that the equilibrium arrival matrix Λ∗ may not be unique. However, the

next result shows that the arrival rate vector is unique in all equilibria.
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Proposition 4.2 (Uniqueness of Arrivals) Assume the capacity vector µ = (µ1, . . . , µn)

is given. The total arrival rate of strategic customers to period j, j = 1, . . . , n, is the

same in all time-of-service equilibria. Alternatively, if Λ∗ and Λ̂
∗

are two equilibrium

arrival rate matrices, it must be that for any j = 1, . . . , n,∑m

i=1
Λ∗ij =

∑m

i=1
Λ̂∗ij.

Since the arrival rates of base customers are fixed, Proposition 4.2 also implies the

total arrival rate λj, including both base and strategic customers, to period j is also

unique. As a result, customers to the same time period would incur the same expected

waiting time in all equilibria. Nonetheless, the compositions of strategic customers in

each period can be different in distinct equilibria. Namely, if Λ∗ and Λ̂
∗

are both TOS

equilibria, there must exist a period j such that Λ∗ij 6= Λ̂∗ij for a certain type i.

4.5 Capacity Allocation under TOS Equilbrium

Our discussion in the previous section presumes that service capacities in all periods

are fixed. In this section, we first vary the capacity allocation and illustrate its impact

on customer equilibrium TOS choices. We then account for these equilibrium choices

and consider the capacity allocation problems. We propose two models to depict two

different scenarios. In Section 4.5.3, we focus on the problem in which total capacity is

fixed and difficult to increase in the short run. This model is of importance for many

public service systems, in particular, emergency rooms, in which shortage of physician

has been widely reported. Our model in this subsection addresses these service providers’

challenges in capacity management. Section 4.5.4 adds a cost perspective and discusses

optimal capacity decisions over time when capacities have to be purchased at time-

varying rates. In both models, the service provider determines capacities designated to

each period and strategic customers choose their TOS’s in response. This endogeneity

raises several difficulties. First, the underlying capacity allocation problems are subject

to customer TOS equilibrium constraints. This type of optimization problems in general

does not allow a tractable analytical solution and may be numerically challenging. We

instead consider the so-called first-best (FB) problem which characterizes the system-

wide optimality by allowing the provider to control both capacity decisions and customer

routing. However, strategic customers determine their TOS selfishly, which results in two

issues: (i) The FB capacity allocation might not be incentive compatible with customer

TOS equilibria. (ii) System efficiency might be jeopardized due to strategic customers’
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self-interested actions. We will address these issues as well in this section.

4.5.1 Impacts of Capacity Allocation on TOS Choices

Proposition 4.1 establishes the existence of TOS equilibria for a fixed capacity vector µ,

but does not reveal how TOS equilibria vary as capacity allocation changes. We illustrate

the effect of the capacity allocation on customer equilibrium TOS choices by an example.

A Two-Period Two-Type Example. Consider a two-period model with 2 types

of strategic customers. When delays are not taken into account, strategic customers of

types 1 and 2 prefer service in periods 1 and 2 respectively, i.e. v11 > v12 and v22 > v21.

Unit delay costs for both types are time-invariant. In other words, c11 = c12 = c1 and

c21 = c22 = c2. We fix the total capacity available to the two periods as a constant

µ but vary the allocation continuously. Note that in this particular example, the TOS

equilibrium is unique for all allocations.

Figure 4.1: Equilibrium of Two-Period Two-Type Case

Figure 4.1 illustrates equilibrium TOS choices as a function of the excess capacity in

period 2 after serving the base customers, i.e., µ2−Λb
2. Let W ∗

i , i = 1, 2, be the expected

waiting time of period i in equilibrium. The vertical axis accordingly represents the

expected delay difference W ∗
2 −W ∗

1 in customer equilibrium TOS choices.

When the excess capacity µ2−Λb
2 is barely above zero, congestion in period 2 is much

severer than that in period 1. Although type 2 customers compromise and join a less

favorable time period, their equilibrium net utility v21 − c2W
∗
1 still surpasses what they

would earn if they joined period 2, i.e., v21 − c2W
∗
1 > v22 − c2W

∗
2 . Thereby, all strategic

customers are pooled to period 1 if µ2−Λb
2 is marginally above zero. As the excess capacity

µ2 − Λb
2 increases, congestion in period 2 is gradually relieved and the expected delay

difference decreases. The reduced discrepancy incentivizes type 2 customers to switch
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back to their preferred period. Nevertheless, when µ2 − Λb
2 is only at an intermediate

level, accommodating only a fraction of type 2 customers would raise the delay difference

to an equilibrium state in which v21 − c2W
∗
1 = v22 − c2W

∗
2 . In consequence, type 2

customers are mixed in two time periods in equilibrium until the excess capacity µ2−Λb
2

reaches a higher level such that both types of strategic customers are separately served

in their favorable periods. Successive escalation in period 2’s excess capacity continues

the decline in expected delay difference, which not only reinforces type 2 customers’

willingness to stay but also starts to attract type 1 customers. The tendency of serving

more customers in period 2 stops when the excess capacity µ2 − Λb
2 is sufficiently large

and all type 1 customers eventually join period 2.

Figure 4.1 simply illustrates the effect of capacity allocation on equilibrium arrivals

and we will account for this effect and deliberate how to optimally manage the capacity

allocation over time in order to achieve maximum system efficiency.

4.5.2 System Welfare as a Performance Measure

We use the system welfare as a performance measure. For a given capacity allocation

µ and an arrival rate Λ, the system welfare includes net utilities of base and strategic

customers, i.e.,

S(µ,Λ) =
n∑
j=1

(
vbj − cbjWj(µj, λj)

)
Λb
j +

n∑
j=1

m∑
i=1

(vij − cijWj(µj, λj)) Λij (4.4)

=
n∑
j=1

vbjΛ
b
j +

n∑
j=1

m∑
i=1

vijΛij −
n∑
j=1

Cj(λj)Wj(µj, λj), (4.5)

where Cj(λj) is defined in (4.2). We consider the system welfare as a performance measure

for two reasons. First, the system welfare serves as a good benchmark to evaluate system

performance as a whole. Second, this performance measure is plausible for a nonprofit

facility whose first priority is to provide high quality service with high efficiency to the

public. Instances of such facilities include emergency departments in Canada, United

Kingdom and other countries or call centers for government services, which may operate

under a large workforce with more than 500 employees (Pelleau et al. 2014). Furthermore,

for many private firms, the main responsibility of their call centers is to retain customers

and protect the organizations’ greatest asset–their customers (Desmarais n.d.). From

that perspective, it seems also reasonable to use total customer utility as a performance

measure.
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4.5.3 Capacity Allocation with Fixed Total Capacity

In this section, we restrict our attention to the case where the facility has to operate under

a limited total capacity. This capacity constraint can be due to several reasons. On the

one hand, managers of many service facilities, e.g., call centers and hospitals, receive fixed

amounts of operating budget from finance departments of corporations or governments,

which limits the amount of available capacity. On the other hand, capacity can also be a

resource with inadequate supply under certain circumstances, particularly in health care

industry. The shortage of doctors and nurses has been well reported and documented

by media (cf. The Globe and Mail 2013) or independent heath care organizations (cf.

Council on Physician and Nurse Supply 2007). Therefore, efficient operation strategy

may be of particular interest in the fixed total capacity situation.

4.5.3.1 No-Balking Case

We first consider the problem without balking. This model suggests useful insights into

capacity management, customer routing and incentive alignment. We will relax this

assumption and explore its impact in Section 4.5.3.2.

The provider determines his intertemproal capacity allocation µ = (µ1, . . . , µn) of a

fixed total amount µ, which can be interpreted as a projection of the total number of

shifts the provider can assign. In response, strategic customers selfishly choose their TOS

which results in the equilibrium arrival Λ∗(µ). The provider’s objective is to maximize

the system welfare S(µ,Λ∗(µ)) while accounting for customer responses in timing their

arrivals. Mathematically, the provider solves the following capacity allocation problem

with fixed resource, referred to as the CAFR problem,

max
µ

S(µ,Λ∗(µ))

s.t. µ1 + · · ·+ µn = µ, (4.6)

(CAFR)
∑n

j=1 Λ∗ij(µ) = Λi, Λ∗ij(µ) ≥ 0, i = 1, . . . ,m, j = 1, . . . , n (4.7)

λj(Λ
∗(µ)) = Λbj +

∑m
i=1 Λ∗ij(µ) < µj , j = 1, . . . , n (4.8)

Uik(Λ
∗(µ)) = Uik′(Λ

∗(µ)), ∀ k, k′ ∈ Pi(µ) (4.9)

Uik(Λ
∗(µ)) ≥ Uik′(Λ∗(µ)), ∀ k ∈ Pi(µ) and k′ ∈ Zi(µ) (4.10)

where Pi(µ) = {j | Λ∗ij(µ) > 0} and Zi(µ) = {j | Λ∗ij(µ) = 0}. Although the provider

could choose not to exhaust all capacity, it will never be optimal to do so. The system

welfare can always be improved by allocating any residual capacity to any period in order

to alleviate congestion. Thus, we impose the binding capacity constraint
∑

j µj = µ

without loss of generality. In the CAFR problem, we allow strategic customers to self-
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select TOS, yet they are not permitted to balk. In other words, every customer will be

eventually served by the provider as shown by the demand constraint
∑

j Λ∗ij(µ) = Λi.

We will relax this condition in Section 4.5.3.2. In order to achieve a stable system,

allocated capacity to each period must exceed the demand. Therefore, we have the

stability constraint (4.8). Finally, strategic customers choose their TOS’s and the system

reaches an equilibrium when (4.9) and (4.10) are simultaneously satisfied.

The CAFR problem belongs to a special class of optimization problems, called Mathe-

matical Programming with Equilibrium Constraints (MPEC). Directly solving the MPEC

problems is challenging since the feasible region is ill-conditioned due to the equilibrium

constraints (Luo et al. 1996). For this reason, we first consider a relatively simpler prob-

lem, the so-called first-best (FB) problem

(CAFRfb) max
µ,Λ

S(µ,Λ) s.t.
n∑
j=1

µj = µ,
n∑
j=1

Λij = Λi, λj = Λbj +
m∑
i=1

Λij < µj , and Λij ≥ 0

for j = 1, . . . , n and i = 1, . . . ,m.

In the above FB problem of CAFR, which we refer to as CAFRfb, the provider not only

assigns capacity to each period but also controls customer routing decisions. Hence, the

TOS equilibrium constraint in the CAFR problem becomes irrelevant. Unfortunately,

the CAFRfb problem is still difficult to solve because the objective function is lack of

concavity or even quasi-concavity. Rather than deriving the full solution of CAFRfb, we

characterize two important properties of its optimal solution.

First, we note from (4.5) that the capacity allocation only affects the total system

delay cost but not the overall rewards customers collect. Therefore, capacity allocation

is an independent decision when the customer routing Λ is given. We thus analytically

characterize the optimal capacity allocation rule for given arrivals as shown in next

proposition.

Proposition 4.3 (Optimal Capacity Allocation) Assume the arrival rate matrix Λ

is given and let Cj(λj), defined in (4.2), be the corresponding unit delay cost in period j,

j = 1, . . . , n. The following waiting cost minimization problem

min
µ>λ

n∑
j=1

Cj(λj) ·Wj(µj | λj) s.t.

n∑
j=1

µj = µ (4.11)

is convex and has a unique optimal solution

µ∗j = λj +

√
Cj(λj)∑n

k=1

√
Ck(λk)

(
µ−

n∑
k=1

λk

)
. (4.12)
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The optimal capacity formula (4.12) essentially specifies the best way to allocate the

excess capacity after the system stability has been established. The provider divides the

excess capacity µ−
∑

k λk in a way that is proportional to the square root of the waiting

cost of each period.

The optimal capacity (4.12) implies that customer arrivals to period j affect not only

period j’s delay but also others’. This effect results from the fact that all periods share

the same available capacity. An increase in period j’s customer volume leads to a higher

capacity allocation to period j, which lowers available capacity to other periods and

increases delays of other time periods.

Note that the delay cost Cj(λj)Wj(µj | λj) in each period is decreasing and convex

w.r.t. the capacity level µj. When allocating any additional capacity, the provider would

prefer using it to a period with the largest marginal reduction in the delay cost. As the

capacity assigned to that period increases, the marginal delay cost reduction decreases

due to the convexity. Then, whenever an alternative period offers a better marginal

reduction, the provider starts to invest capacity in the alternative period. As a result,

at the optimal allocation, it must be that the marginal reductions in delay cost of all

periods are the same. Mathematically, it means

C1(λ1)
∂W1(µ∗1 | λ1)

∂µ1

= C1(λ2)
∂W2(µ∗2 | λ2)

∂µ2

= · · · = Cn(λn)
∂Wn(µ∗n | λn)

∂µn
. (4.13)

In addition to describing the optimal capacity allocation for a given arrival Λ, (4.13) also

plays an important role in achieving incentive compatibility with customer selfish TOS

choices, which we will discuss later.

Proposition 4.3 also offers a way to transform the CAFRfb problem, a simultaneous

capacity allocation and customer routing problem, into a pure customer routing problem.

Apply (4.12) to the system welfare S(µ,Λ) in (4.5). We have the system welfare as a

function of customer routing decisions Λ only,

S(µ∗,Λ) =
n∑
j=1

vbjΛ
b
j +

n∑
j=1

m∑
i=1

vijΛij −
n∑
j=1

Cj(λj)Wj(µ
∗
j | λj) (4.14)

=
n∑
j=1

vbjΛ
b
j +

n∑
j=1

m∑
i=1

vijΛij −

(∑n
j=1

√
cbjΛ

b
j +
∑m

i=1 cijΛij

)2

µ−
∑n

j=1 Λb
j −

∑m
i=1 Λi

, (4.15)

where µ∗ = µ∗(Λ) is the optimal capacity vector obtained from (4.12).4 Therefore,

4For notational parsimony, we write the optimal capacity allocation without arguments, with the
understanding that µ∗ is always a function of the given arrival rate matrix Λ.
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solving the CAFRfb problem is equivalent to finding the solution of

max
Λ

S(µ∗,Λ) s.t.
n∑
j=1

Λij = Λi, λj = Λb
j +

m∑
i=1

Λij, and Λij ≥ 0

for j = 1, . . . , n and i = 1, . . . ,m. Acquiring a closed-form solution to the optimal Λ∗

is still difficult. Nonetheless, we notice that the optimal customer routing decision must

satisfy the “no-mixing” property as the next proposition states.

Proposition 4.4 (Optimal Customer Routing) Let Λ∗ = arg max
Λ

S(µ∗,Λ), where

µ∗ = µ∗(Λ) is the optimal capacity allocation in (4.12) for a given Λ. Then, for each

row Λ∗i = (Λi1, . . . ,Λin), i = 1, . . . ,m, only one entry Λ∗ij can be strictly positive and it

equals Λi. In other words, all strategic customers of the same type would be served in

exactly one time period at optimality.

The above result shows that under endogenous capacity, the provider finds it optimal

to serve all strategic customers in the same time period. Yet, it could well be optimal

to serve multiple types in one period. Recall the two-period two-type example we dis-

cussed in Figure 4.1. In equilibrium, strategic customers of the same type may join two

different periods. Proposition 4.4 clearly indicates allowing the same type customers to

join multiple periods would not lead to the maximum efficiency. The provider tends to

assigning strategic customers to either a period that offers higher service valuation or

one that can provide less congestion. In the example of Figure 4.1, the provider would

prefer the “separation” strategy if both types are strongly in favor of particular periods,

whereas pooling both types in one period may sustain as a superior strategy when one

type is relatively TOS insensitive.

Although the CAFRfb problem provides guidance on how to achieve system-wide

optimality via capacity and customer allocation, the provider may not be able to control

customer TOS choices. It is strategic customers themselves who determine their arrival

times that maximize their expected utilities. Proposition 4.5 shows that the first-best

solution will also arise under strategic customer self-interested TOS choices.

Proposition 4.5 (Incentive Compatibility of the CAFB Problem) The optimal

solution to the CAFRfb problem also satisfies the TOS equilibrium constraint in the CAFR

problem, i.e., the first-best solution to the CAFR problem is also incentive compatible with

strategic customer self-interest TOS choices.

Since the FB solution to the CAFR problem is incentive compatible, strategic cus-

tomer self-interested TOS choices are guaranteed to induce a system-wide optimal arrival
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rate pattern. In contrast to the previous literature on selfish routing in computer and

communication network (Roughgarden 2005), this result highlights the advantage of be-

ing able to adjust capacity levels to cope with self-interested decisions. It is well-known

that routing decisions of self-interested users through a congested network, which has no

central authority, in general cause performance inefficiency (Roughgarden 2005). Such

inefficiency is usually referred to as the price of anarchy (PoA), which quantifies the neg-

ative impact of selfish action relative to system optimality. It has been shown that the

PoA can be arbitrarily high in many settings (Roughgarden and Tardos 2002, Friedman

2004). In contrast, Proposition 4.5 demonstrates the advantage of capacity allocation in

achieving system-wide optimality even under customer selfish choices.

Propositions 4.4 and 4.5 together also imply that customers use pure strategies when

choosing TOS under endogenous capacity decisions. This result is in sharp contrast to

the result from stochastic location models with congestion, where capacity is fixed. As

illustrated in Berman and Krass (2015) (Example 1), customers in general use mixed

strategies in choosing visiting facilities, i.e., they randomize among several facilities.

When restricting customer choices to pure strategies, the system may not be able to reach

an equilibrium at all depending on the given capacity at each server. This observation also

coincides with our demonstrating example in Figure 4.1. The reason that our model can

induce pure strategies is because service rates are decision variables in our model, rather

than given parameters. Whenever a mixed strategy is employed and the system loses its

optimality in efficiency, the provider can re-allocate the capacity to divert customers to

the servers or time periods that are optimal for the system.

We next discuss the intuition for Proposition 4.5. Suppose it is optimal for the

provider to serve all type i customers in period k. The following must hold for any other

period k′ 6= k. At optimality, where all type i customers are served in period k and none

in any other period k′ by Proposition 4.4, it must be that the marginal system welfare

w.r.t. an increase in the type i arrival rate to period k exceeds the marginal system

welfare w.r.t. an increase in the type i arrival rate to period k′, i.e.,

vik−cikWk(µ
∗
k, λ
∗
k)−Ck(λ∗k)

∂Wk(µ
∗
k)

∂Λik

∣∣∣∣
Λik=Λi

≥ vik′−cik′Wk′(µ
∗
k′ , λ

∗
k′)−Ck′(λ∗k′)

∂Wk′(µ
∗
k)

∂Λik′

∣∣∣∣
Λik′=0

.

(4.16)

In (4.16) the marginal system welfare is written as the difference between the individual

utility of the additional customer flow minus the externality inflicted on the rest of the

system. Since we consider an M/M/1 system, marginal effect on expected delay of serving

more customers is equivalent to that of reducing the capacity by the same amount, i.e.,
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∂Wj

∂Λij
= −∂Wj

∂µj
. By (4.16), we have

vik−cikWk(µ
∗
k, λ
∗
k)+Ck(λ

∗
k)
∂Wk(µ

∗
k)

∂µk

∣∣∣∣
Λik=Λi

≥ vik′−cik′Wk′(µ
∗
k′ , λ

∗
k′)+Ck′(λ

∗
k′)
∂Wk′(µ

∗
k)

∂µk′

∣∣∣∣
Λik′=0

.

(4.17)

Moreover, as shown in (4.13), the marginal reductions in delay cost of all periods are the

same under the optimal capacity allocation. Therefore, (4.17) implies

vik − cikWk(µ
∗
k, λ
∗
k) ≥ vik′ − cik′Wk′(µ

∗
k′ , λ

∗
k′), (4.18)

which indicates that type i customers prefer period k to other alternatives.

The result in Proposition 4.5 hinges on the assumption of exponential service times;

however, the results of Dewan and Mendelson (1990) suggest that the efficiency loss may

be small when this assumption is relaxed. Moreover, the flexibility to adjust capacity

allocation is essential in aligning the provider’s and customers’ incentives. It has been

shown that self-interested routing inevitably causes system performance loss when each

server works in an M/M/1 manner with fixed capacity (e.g., Friedman 2004, Haviv and

Roughgarden 2007).

In summary, when balking is not allowed or the provider has to serve all customers,

the optimal solution to the CAFR problem coincides with the system FB solution. At

optimality, strategic customers of the same type are served in the same period under the

equilibrium TOS choices.

4.5.3.2 Balking Case

We now relax the assumption that balking is not allowed and also assume that the

provider controls the admission rates of different customer segments. Let Λ
b

j and Λi be

the maximum potential arrival rates for base customers of period j and type i strategic

customers, respectively. We consider the following capacity allocation problem under

fixed total capacity with balking,

max
µ

S(µ,Λ∗(µ))

s.t. µ1 + · · ·+ µn = µ, (4.19)

0 ≤ Λbj ≤ Λ
b
j , U

b
j (Λ∗(µ)) ≥ 0, j = 1, . . . , n (4.20)

(CAFRb)
∑n

j=1 Λ∗ij(µ) = Λi < Λi, Λ∗ij(µ) ≥ 0, i = 1, . . . ,m, j = 1, . . . , n (4.21)

λj(Λ
∗(µ)) = Λbj +

∑m
i=1 Λ∗ij(µ) < µj , j = 1, . . . , n (4.22)

Uik(Λ
∗(µ)) = Uik′(Λ

∗(µ)) ≥ 0, ∀ k, k′ ∈ Pi(µ) (4.23)

Uik(Λ
∗(µ)) ≥ Uik′(Λ∗(µ)), ∀ k ∈ Pi(µ) and k′ ∈ Zi(µ) (4.24)
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where Pi(µ) = {j | Λ∗ij(µ) > 0} and Zi(µ) = {j | Λ∗ij(µ) = 0}. The CAFRb problem is

similar to the CAFR problem. The service provider allocates the total available capacity

µ accounting for strategic customers’ equilibrium responses to the potential differences

in delays over time. However, the provider now does not need to serve every customer as

specified in constraints (4.20) and (4.21). Moreover, constraints (4.21) and (4.23) require

all base and strategic customers receiving non-negative utilities upon service completion.

Otherwise, customers can choose to balk – an option yielding zero reward.
Analogous to the no-balking case, we first ignore the TOS equilibrium constraints

and further the non-negative net utility constraints. Let Λb = (Λb
1, . . . ,Λ

b
n) and consider

the corresponding FB problem

(CAFRb
fb) max

µ,Λ,Λb
S(µ,Λ) s.t.

n∑
j=1

µj = µ,

n∑
j=1

Λij ≤ Λi, λj = Λbj+

m∑
i=1

Λij < µj , Λij ≥ 0 and 0 ≤ Λbj ≤ Λ
b

j

for j = 1, . . . , n and i = 1, . . . ,m, in which the provider is able to control the capacity

allocation, admission rate of every customer segment, and routing decisions.

Denote an optimal solution to the CAFRb
fb by (µ∗,Λ∗,Λb∗) and the optimal arrival

rate of type i strategic customers Λ∗i =
∑m

j=1 Λ∗ij. Note that the “no-mixing” customer

routing property in Propositions 4.4 holds for any given Λ, in particular, when Λ = Λ∗,

and the optimal capacity allocation rule in Proposition 4.3 applies to any known Λ and

Λb, in particular, when Λ = Λ∗ and Λb = Λb∗. Hence, the incentive compatibility with

customer self-interested TOS choices is also achieved by the FB solution (µ∗,Λ∗,Λb∗) to

the CAFRb
fb problem.

Given that all the results in the no-balking case, Propositions 4.3–4.5, still hold at

the optimal arrival rates Λb∗ and Λb∗, the service provider only needs to concern how

to induce the optimal arrival rates Λ∗ and Λb∗. It is well known that pricing can be

used as a leverage to manage customer flows (e.g., Naor 1969, Mendelson and Whang

1990). However, in our setting, there are multiple types of customers with different delay

sensitivities and it is possible that several types might be simultaneously served in the

same time period. Nevertheless, Proposition 4.6 shows that a single time-invariant and

type-independent price is sufficient to induce the optimal rates of all types.

Proposition 4.6 (Pricing for Optimal Arrivals) Assume that Λ∗ and Λb∗ are the

optimal arrival rates for strategic and base customers and λ∗j = Λb∗
j +

∑m
i=1 Λ∗ij, j =

1, . . . , n, is the optimal total arrival rate to period j, j = 1, . . . , n. The provider can

charge a time-invariant and type-independent price

p =

(
n∑
j=1

√
Cj(λ∗j)

)2(
µ−

n∑
j=1

λ∗j

)−2

(4.25)
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to both strategic and base customers in order to induce the optimal total arrival rate to

each period.

We use strategic customers to discuss this result. The same rationale applies to base

customers as well. Consider the marginal value of serving type i customers when capacity

is optimally allocated according to (4.12). As mentioned before, strategic customers of

the same type would be served in the same time period, say period j∗. From (4.14), the

marginal value of serving type i customers is

∂S∗

∂Λi

=
∂S∗

∂Λij∗
= vij∗ − cijW ∗

j∗ − Cj∗(Λi)
∂W ∗

j∗

∂Λi

−
∑
j 6=j∗

Cj
∂W ∗

j

∂Λi

,

where W ∗
j (Λi) = Wj(µ

∗
j(Λi) | λj), j = 1, . . . , n, and Cj∗(Λi) = Cj∗(λj∗(Λi)) are all

functions of Λi and S∗ is a shorthand of S(µ∗,Λ) in (4.14). The first two terms vij∗ −
cij∗W

∗
j∗ represent the individual net utility and the last two terms capture the externality.

Since customer self-interested decisions ignore the externality they inflicts on the system,

the provider has to charge type i customers a price that is equal to the externality

cost, which is characterized by (4.25), to align their incentives in order to induce the

optimal arrival rate. Moreover, the provider’s optimal capacity allocation policy balances

externalities inflicted on others such that irrespective of which types are served and in

which period they are served, externalities are always the same. This property eventually

allows a uniform price to achieve the optimal arrivals for all customers who may choose

to join different time periods for services.

Finally, at the optimal solution (µ∗,Λ∗,Λb∗), it must be that ∂S∗/∂Λi ≥ 0 for i =

1, . . . ,m, which implies net utilities that type i customers’ net utilities vij∗ − cij∗W ∗
j∗ are

non-negative at optimality.

In summary, when allowing customers to balk and the provider to control arrival

rates, the service provider only needs to consider a mechanism to induce the optimal

arrivals. A uniform price that equals the externality cost at optimal arrivals Λ∗ and Λb∗

is sufficient for that purpose.

4.5.4 Capacity Allocation with Time-Varying Capacity Cost

The previous model may well depict a situation in which the total capacity is inadequate,

such as in health care industry. In this section, we consider another model that attempts

to balance the expected benefits of increasing capacity against the capacity cost in the

same vein as the long-run model in Mendelson (1985). Specifically, capacity in period j,

j = 1, . . . , n, can be purchased at a uint cost bj and is never in short supply. We allow
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time-dependent capacity cost, which reflects a natural industrial reality. In traditional

call centers, outsourcing part of the service offshare is a common practice to reduce unit

capacity cost. Depending on the the ratio of onshare and offshare agents at different

times, unit capacity costs vary over time. In the instance of recent innovative work-from-

home call centers (e.g., LiveOps and Arise Virtual Solutions), providers have to offer a

higher hourly salary in high volume time to attract enough workers (Gurvich et al. 2014).

As a result, providers’ unit capacity costs would fluctuate over time.

We again use system welfare as a performance measure. However, the provider has

to deduct the capacity cost from the total welfare. Therefore, we denote the system net

welfare as

NS(µ,Λ) = S(µ,Λ)−
n∑
j=1

bjµj,

where S(µ,Λ) is defined in (4.5) and the second term represents the provider’s overall

capacity cost for a chosen capacity vector µ. This performance measure considers both

customer delays and the provider capacity investment cost.

For simplicity, we again first consider the no-balking case and later discuss how our

results would change if balking is allowed and the provider can control the admission

rates of all customer segments.

4.5.4.1 No-balking Case

The provider chooses his intertemporal capacity plan µ = (µ1, . . . , µn) to maximize the

system net welfare. We assume that capacity for each period is always available at a

unit cost bj. This assumption distinguishes the CAFR problem with the current capacity

allocation (CA) problem. Hence, the capacity constraint is irrelevant and we express the

provider’s problem as

(CA) max
µ

NS(µ,Λ) s.t. (4.7), (4.8), (4.9), and (4.10),

where (4.7)-(4.10) are the same constraints as in the CAFR problem. Due to the equi-

librium constraints (4.9) and (4.10), it is challenging to directly solve the CA problem.

We thus drop the customer TOS equilibrium constraints and consider the corresponding

FB problem

(CAfb) max
µ,Λ

NS(µ,Λ) s.t.
n∑
j=1

Λij = Λi, λj = Λb
j +

m∑
i=1

Λij < µj, and Λij ≥ 0
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for j = 1, . . . , n and i = 1, . . . ,m, in which the provider is assumed to be able to control

customer routing in addition to the capacity allocation. As in the model considered

above, it is also difficult to obtain a full solution to the CA problem. We characterize

the optimal capacity levels over time for given intertemporal arrival rates and establish

the “no-mixing” property of the customer routing decisions.

Proposition 4.7 (Optimal Capacity Allocation) Assume the arrival rate matrix Λ

is given and let Cj(λj), defined in (4.2), be the corresponding unit delay cost in period j,

j = 1, . . . , n. The following cost minimization problem

min
µ>λ≥0

n∑
j=1

Cj(λj) ·Wj(µj | λj) +
n∑
j=1

bjµj

is convex and has a unique optimal solution

µ∗j = λj +
√
Cj(λj)/bj. (4.26)

When the arrival rates are given, the capacity decisions reflect the economical tradeoff

between total delay cost and the capacity investment. Moreover, this tradeoff arises in

each time period independently for a given Λ. That is, the capacity decision of a single

period does not have any influence to that of another period, which differs from the

CAFR problem. In essence, the provider stops his investment in capacity of each period

if and only if the marginal waiting cost reduction of the focal period equals the marginal

capacity cost increment, i.e.,

−Cj(λj)
∂Wj(µ

∗
j | λj)

∂µj
= bj, j = 1, . . . , n. (4.27)

We may interpret the optimal capacity condition (4.27) as a generalization of (4.13).

In the CAFRfb problem, each unit of the capacity is equally costly to the provider.

Therefore, the provider does not need to account for differences in unit capacity costs

when allocating the capacity and only needs to concern the delay cost. The fact that

marginal waiting cost reductions in all periods are equalized at optimality actually reflects

the indistinctive unit capacity cost. In contrast, if unit capacity costs are different over

time, we obtain a general optimal condition (4.27).

The capacity allocation criterion (4.27) also has a critical implication in aligning

customer incentives with the socially optimal FB solution. We will further discuss it

later in this section.
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The optimal capacity decision (4.26) allows us to reduce the CAfb problem to a pure

routing problem. Let µ∗ = µ∗(Λ) be the optimal capacity vector from (4.26). We write

NS(µ∗,Λ) = S(µ∗,Λ)−
n∑
j=1

bjµ
∗
j

=
n∑
j=1

vbjΛ
b
j +

n∑
j=1

m∑
i=1

vijΛij −
n∑
j=1

Cj(λj)Wj(µ
∗
j | λj)−

n∑
j=1

bjµ
∗
j .

=
n∑
j=1

vbjΛ
b
j +

n∑
j=1

m∑
i=1

vijΛij −
n∑
j=1

Cj(λj)
√
bj/Cj(λj)−

n∑
j=1

bj

(
λj +

√
Cj(λj)/bj

)
.

By (4.1) and (4.2),

NS(µ∗,Λ) =
n∑
j=1

vbjΛ
b
j −

n∑
j=1

bjΛ
b
j +

n∑
j=1

m∑
i=1

vijΛij −
n∑
j=1

(
bj

m∑
i=1

Λij

)

−2
n∑
j=1

√√√√bj

(
cbjΛ

b
j +

m∑
i=1

cijΛij

)
. (4.28)

Therefore, solving the CAfb problem is equivalent to finding the optimal value of

(CAfb) max
Λ

NS(µ∗,Λ) s.t.
n∑
j=1

Λij = Λi, λj = Λb
j +

m∑
i=1

Λij < µj, and Λij ≥ 0.

Analogous to the fixed total capacity case, the optimal customer routing satisfies the

“no-mixing” property. That is, it is optimal to serve all customers of a given type in the

same time period.

Proposition 4.8 (Optimal Customer Routing) Let Λ∗ = arg max
Λ

S(µ∗,Λ), where

µ∗ = µ∗(Λ) is the optimal capacity allocation in (4.26) for a given Λ. Then, for each

row Λ∗i = (Λi1, . . . ,Λin), i = 1, . . . ,m, only one entry Λ∗ij can be strictly positive and it

equals Λi. In other words, all strategic customers of the same type would be served in

exactly one time period at optimality.

Again, this result simply shows that potential shorter delay from pooling and service

in a more favorable period are mutually exclusive. Any attempt to engross both would

impair the net welfare.

Although the FB solution suggests the best way to operate the system, the provider

may not be able to control customer routing. Given the allocated capacities over time

and their attributes, customers make TOS decisions on their own. Unlike in the capacity
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allocation model studied above, here the FB solution to the CAfb is not necessarily

compatible with customer self-interested choices. The provider must impose a pricing

scheme to reconcile customer incentives with his.

Proposition 4.9 (Incentive Compatibility of the CA Problem) The optimal so-

lution to the CAfb problem is incentive compatible with customer selfish TOS choices if

the provider charges such that price differences are equal to the corresponding differences

in unit capacity cost, i.e., pj−pj′ = bj−bj′ for any j, j′ = 1, . . . , n, where pj is the service

price for period j.

The proposition above indicates that the incentive compatibility can be achieved as

long as price differences in TOS equal the corresponding capacity cost differences. The

intuition for this result is similar to the one in the fixed capacity model, but with a minor

variation.

By Proposition 4.8, the provider prefers serving all type i customers in one period,

say period k, at optimality. This implies that the marginal net welfare, which equals

additional individual utility minus the externality, w.r.t. an increase in the type i arrival

rate to period k exceeds the marginal net welfare w.r.t. an increase in the type i arrival

rate to any other period k′, i.e.,

vik−cikWk(µ
∗
k, λ
∗
k)−Ck(λ∗k)

∂Wk(µ
∗
k)

∂Λik

∣∣∣∣
Λik=Λi

≥ vik′−cik′Wk′(µ
∗
k′ , λ

∗
k′)−Ck′(λ∗k′)

∂Wk′(µ
∗
k)

∂Λik′

∣∣∣∣
Λik′=0

.

(4.29)

Since
∂Wj

∂Λij
= −∂Wj

∂µj
and the externality equals the capacity cost by (4.27), thus

vik − cikWk(µ
∗
k, λ

∗
k)− bk ≥ vik′ − cik′Wk′(µ

∗
k′ , λ

∗
k′)− bk′ . (4.30)

As a result, the difference in the individual utility must exceed that in capacity cost, i.e.,

vik − cikWk(µ
∗
k, λ

∗
k)− (vik′ − cik′Wk′(µ

∗
k′ , λ

∗
k′)) ≥ bk − bk′ = pk − pk′ . (4.31)

Therefore, by (4.31), if making the price difference equals cost difference, type i customers

will actually prefer period k, i.e.,

vik − cikWk(µ
∗
k, λ

∗
k)− pk ≥ vik′ − cik′Wk′(µ

∗
k′ , λ

∗
k′)− pk′ .

As we mentioned before, the fixed resource problem can be considered as a special case in

which the unit capacity cost is time-invariant. In that particular case, no intertemporal

variation exists in unit capacity cost and thus no pricing is required to achieve the

incentive compatibility.
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Proposition 4.9 shows that only the difference in price matters when coordinating

customer individual choices with system efficiency. This relatively weak requirement

endows the provider with some confined flexibility in setting the exact prices for TOS.

For example, any constant markup on top of the unit capacity cost always serves as a

valid incentive compatible scheme. Nonetheless, it is readily shown that under the “price-

difference-equal-cost-difference” principle, this constant markup scheme is the only one

that can retain the incentive compatibility.

Although the CAFR and CA problems are modeled for different situations about

capacity availability, they share many commonalities in their solution structures. First,

the optimal customer routing principle is the same. In both models, serving customers

of the same type in the same time period appears to be the most efficient way to utilize

capacity. Second, the optimal capacity allocation manages congestion subject to capacity

cost. In the CA model, the provider freezes his investment in each period’s capacity

when the marginal capacity cost equals the marginal delay cost. Since the capacity costs

are time-varying, marginal delay costs also differ at optimality. In contrast, each unit

capacity is equally costly to the provider in the CAFR model. Marginal delay costs

thus have no difference across time periods under the optimal routing. Third, differences

in capacity costs are essential in achieving incentive compatibility. In particular, unit

capacity is identically valuable in the CA model. Hence, no pricing scheme is required.

4.5.4.2 Balking Case

We now relax the no-balking assumption and also assume that the provider controls the

arrival rates of different segments. Specifically, the provider solves the problem

(CAb) max
µ

NS(µ,Λ) s.t. (4.20), (4.21), (4.22), (4.23), and (4.24),

where (4.20)-(4.24) are the same constraints as in the CAFRb problem. Constraints

(4.20) and (4.21) allow the provider to determine the admission rates of base and strategic

customers. Constraints (4.20) and (4.23) ensure all customers receive nonzero expected

net utility upon service completion. We once again explore the FB problem to circumvent

the technical difficulty caused by the equilibrium constraints (4.23) and (4.24) . We thus

ignore these two constraints and the nonzero net utility constraints, which gives rise to

the following FB problem

(CAb
fb) max

µ,Λ,Λb
NS(µ,Λ) s.t.

n∑
j=1

Λij ≤ Λi, λj = Λbj+

m∑
i=1

Λij < µj , Λij ≥ 0 and 0 ≤ Λbj ≤ Λ
b
j .
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Although the feasible region of the CAb
fb problem is not compact, we can apply Propo-

sition 4.7 and reduce the decision variables to Λ and Λb only. Thereby, we have an

alternative representation of the CAb
fb problem

max
Λ,Λb

NS(µ∗,Λ) s.t.
n∑
j=1

Λij ≤ Λi, Λij ≥ 0 and 0 ≤ Λb
j ≤ Λ

b

j,

where NS(µ∗,Λ) is defined in (4.28). Notice that Propositions 4.8 holds for any given Λ,

in particular, when Λ = Λ∗. In consequence, the incentive compatibility in Proposition

4.9 can also be accomplished when Λ = Λ∗ and Λb = Λb∗. Then, the only issue we need

to address is how to induce the optimal arrival rates.

Proposition 4.10 (Pricing for Optimal Arrivals) Charging for time period j the

capacity cost bj induces the optimal customer arrival rates and TOS choices.

Recall that any constant markup on the capacity cost would establish the incentive

compatibility. However, zero markup leads to the optimal arrival rates to the system.

Let us concentrate on strategic customers to articulate the result. Similar analysis

can be applied to base customers as well. Consider the marginal value of serving type

i customers. By Proposition (4.8), all type i customers are served in one period, say

period j∗. Under the optimal capacity allocation (4.26), the marginal value of serving

type i customers is

∂NS∗

∂Λi

=
∂NS∗

∂Λij∗
= vij∗ − cij∗W ∗

j∗ − Cj∗(Λi)
∂W ∗

j∗

∂Λij∗
− bj∗

∂µ∗j∗

∂Λij∗

where µ∗j∗ = µ∗j∗(Λi), W
∗
j∗(Λi) = Wj∗(µ

∗
j∗ | λj∗) and Cj∗(Λi) = Cj∗(λj∗(Λi)) are all

functions of Λi and NS∗ is a shorthand of NS(µ∗,Λ) in (4.28). The first two terms vij∗−
cij∗W

∗
j∗ represent the individual net utility. The third one captures the externality and

the last one exhibits the additional capacity cost to accommodate additional customers.

Serving more customers increases externality inflicted on others. Yet, the corresponding

optimal capacity will also be increased. The net effect from the last two terms turns out

to be only dependent on the unit capacity cost, i.e.,

∂NS∗

∂Λi

= vij∗ − cij∗W ∗
j∗ − bj∗ .

At the optimal solution, it must be that ∂NS∗/∂Λi ≥ 0 for i = 1, . . . ,m, which implies net

utilities that type i customers receive, vij∗−cij∗W ∗
j∗ , are non-negative. Moreover, it can be

shown that ∂NS∗/∂Λi = 0 only when Λ∗i < Λi. Thus, a price bj may effectively control
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the admission rate. Since the prices for TOS exactly match the associated capacity

costs, incentive compatibility retains. We note that, like Proposition 4.5, Proposition

4.10 hinges on the assumption that the service time follows an exponential distribution.

However, as Dewan and Mendelson (1990) observe, setting prices at marginal costs could

be a very good “rule of thumb” for other non-exponential distributions, e.g., Erlang-k

distribution.

We can also relate Proposition 4.10 to the CAFR model. Because each unit capacity

is equally costly to the provider in that model, a uniform price can induce both optimal

arrivals and incentive compatibility.

4.6 Conclusion and Future Research Directions

This paper puts endogeneity between capacity decisions and arrival patterns in perspec-

tive. We first model customer TOS choices for a facility that is available over a horizon

of multiple time periods. In addition to heterogeneous delay sensitivities, we also al-

low for heterogeneous preferences on TOS and argue that differences in intertemporal

delays may affect customer TOS choices. Such differences further result in the endogene-

ity between capacity decisions and the intertemporal arrival patten, which is ignored

in previous literature. We then consider the optimal capacity allocation problem under

customer self-interested TOS choices when taking into account this endogeneity. We

find that for a provider with a fixed total capacity without balking, the socially optimal

capacity allocation is also incentive compatible. However, if capacity costs are varying

over time, the optimal capacity allocation has to simultaneously manage both delay cost

and pecuniary cost. Therefore, it is less effective in controlling impacts of congestion.

We show that charging prices that equal the unit capacity costs can induce both the

incentive compatibility and optimal arrival rates.

4.6.1 Ongoing Work and Potential Future Work

Our analysis and results point to further research directions. We outline three of them

here.

First, although time-dependent pricing has its advantage in retaining incentive com-

patibility, it might be difficult to implement in many scenarios. This gives rise to the

necessity to consider the capacity allocation problem in the absence of pricing. In this

case, the solution to the FB problem need not be incentive compatible. This raises two

questions, (i) under what conditions is incentive-compatibility satisfied, and (ii) in other
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cases, how should the provider set capacity levels, compared to the FB solution.

Second, we use system welfare as the performance measure. This is appropriate for

public services, but does not well represent private service providers, who aim to maximize

their revenues. It is of interest to see how the change in objective from social optimality

to provider’s profit affects the results.

Third, our results demonstrate the value of studying individual-level service records in

order to estimate customer characteristics, e.g., their TOS preferences and delay sensitiv-

ities. This information might be practically useful for a service facility, e.g., a call center,

who attempts to adjust staffing in the long run. Specifically, because historical arrival

data only reflect the demand response to specific past staffing levels. Therefore, historic

demand data alone may be misleading for the purpose of predicting future arrivals after

capacity adjustments. This type of variability is in fact predictable from historical data

with a more sophisticated forecasting framework built on our model.

4.7 Appendix

4.7.1 Proofs

Proof of Proposition 4.1. We show the existence of an equilibrium by constructing an

arrival rate matrix Λ that satisfy (EC1) and (EC2) for every type of strategic customers.

Let us first fix the capacity vector µ = (µ1, . . . , µn). Following the technique in Beck-

mann, McGuire and Winstern (1956), we consider the ancillary maximization problem

max
Λ

φ(Λ) :=
n∑
j=1

m∑
i=1

∫ m∑
t=1

Λtj

0

(vij − cijWj(x)) dx (4.32)

s.t.
n∑
j=1

Λij = Λi, i = 1, . . . ,m, and Λij ≥ 0,

in decision variables Λ = (Λij), i = 1, . . . ,m and j = 1, . . . , n, where Wj(x) =
(
µj − Λbj − x

)−1
.

The feasible region of problem (4.32) is apparently convex. We will further show that the

objective function is concave in vec(ΛT ) = (Λ11, . . . ,Λm1, . . . ,Λ1j , . . . ,Λmj , . . . ,Λ1n, . . . ,Λmn)T ,

where “T” denotes the transpose of a matrix and vec(ΛT ) is a vectorization operation

by stacking ΛT ’s columns one by one. Since

∂φ

∂Λij

= vij − cijWj

(∑m

t=1
Λtj

)
= vij − cij

(
µj − Λb

j −
∑m

t=1
Λtj

)−1

,
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we have for any i, i′ = 1, . . . ,m and j, j′ = 1, . . . , n,

∂2φ

∂Λij∂Λi′j′
=


−cij

(
−Λb

j −
∑m

t=1 Λtj

)−2
if j = j′,

0 if j 6= j′.

Therefore, we obtain the mn×mn Hessian matrix of φ in vec(ΛT )

H(φ) =



∂2φ

∂Λ2
11

· · · ∂2φ

∂Λ11∂Λm1
· · · · · · ∂2φ

∂Λ11∂Λ1n
· · · ∂2φ

∂Λ11∂Λmn
...

. . .
...

. . .
...

. . .
...

∂2φ

∂Λm1∂Λ11
· · · ∂2φ

∂Λ2
m1

· · · · · · ∂2φ

∂Λm1∂Λ1n
· · · ∂2φ

∂Λm1∂Λmn
...

. . .
...

. . .
...

. . .
...

∂2φ

∂Λ1n∂Λ11
· · · ∂2φ

∂Λ1n∂Λm1
· · · · · · ∂2φ

∂Λ2
1n

· · · ∂2φ

∂Λ1n∂Λmn
...

. . .
...

. . .
...

. . .
...

∂2φ

∂Λmn∂Λ11
· · · ∂2φ

∂Λmn∂Λm1
· · · · · · ∂2φ

∂Λmn∂Λ1n
· · · ∂2φ

∂Λ2
mn



=


B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bn

 ,

where each diagonal m×m block

Bj =
−cj1T(

µj − Λb
j −

∑m
i=1 Λij

)2 , cj = (c1j, . . . , cmj)
T , and 1 = (1, . . . , 1)T .

Since cj1
T is a rank 1 matrix and its only non-zero eigenvalue equals cTj 1 > 0, Bj is

negative semidefinite. Thus, the objective function φ is concave and the maximization

problem (4.32) is convex. As a result, at least one global maximizer is guaranteed to

exist.

We next verify that any maximizer of (4.32) satisfies the TOS equilibrium conditions

(EC1) and (EC2) in Definition 1. By the Kuhn-Tucker conditions, any optimal solution

to (4.32), which is denoted as Λ∗, must satisfy

vij − cijWj

(
m∑
t=1

Λ∗tj

)
− ωi + γij = 0 (4.33)

γij · Λij = 0 (4.34)

for any type i, i = 1, . . . ,m, where ωi and γij ≥ 0 are the Lagrange multipliers on

constraints
∑n

j=1 Λij = Λi and Λij ≥ 0, respectively.

For each type i, let Pi = {j | Λij > 0} and Zi = {j | Λij = 0}. For any k, k′ ∈ Pi,
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γik = γik′ = 0 due to the complementarity condition (4.34) . Therefore, by (4.33),

vik − cikWk

(
m∑
t=1

Λ∗tk

)
= vik′ − cik′Wk′

(
m∑
t=1

Λ∗tk′

)
= ωi. (4.35)

For k ∈ Pi and k′ ∈ Zi, γik = 0 and γik′ ≥ 0. Hence, from (4.33),

vik − cikWk

(
m∑
t=1

Λ∗tk

)
= ωi ≥ ωi − γik′ = vik′ − cik′Wk′

(
m∑
t=1

Λ∗tk′

)
. (4.36)

Equations(4.35) and (4.36) coincide with (EC1) and (EC2) in Definition 1, which indi-

cates any maximizer of (4.32) is an equilibrium arrival rate matrix.

Proof of Proposition 4.2. Let Λ∗ and Λ̂
∗

be two distinct equilibria. Thus, they are

both maximizers of (4.3). Consider all convex combinations of Λ∗ and Λ̂
∗

in the form of

tΛ∗+(1− t)Λ̂
∗

for t ∈ [0, 1]. Obviously, tΛ∗+(1− t)Λ̂
∗

is a feasible solution. Recall that

we have showed the concavity of φ in the proof of Proposition 4.1. Therefore, we have

φ(tΛ∗ + (1− t)Λ̂
∗
) ≥ tφ(Λ∗) + (1− t)φ(Λ̂

∗
).

The inequality cannot be strict, since Λ∗ and Λ̂
∗

are maximizers of (4.3). Therefore, it

must be

φ(tΛ∗ + (1− t)Λ̂
∗
) = tφ(Λ∗) + (1− t)φ(Λ̂

∗
), (4.37)

for any t ∈ [0, 1]. Recall that we have shown Bj is negative semidefinite in the proof

of Proposition 4.1, then each summand of φ is concave. Therefore, equation (4.37)

implies that every summand

∫ y

0

(vij − cijWj(x)) dx must be linear between
∑m

t=1 Λ∗tj

and
∑m

t=1 Λ̂∗tj. Otherwise, (4.37) cannot hold for all t ∈ [0, 1]. This further indicates

vij − cijWj(x) is a constant between
∑m

t=1 Λ∗tj and
∑m

t=1 Λ̂∗tj. At last, since the capacity

µj is fixed, we obtain λ∗j = λ̂
∗
j and

∑m
i=1 Λ∗ij =

∑m
i=1 Λ̂∗ij as well.

Proof of Proposition 4.3. The objective function is strictly convex in µ. Thus, the

problem is strictly convex and allows an unique optimal solution. By the Kuhn-Tucker

conditions, an optimal capacity vector µ∗ = (µ∗1, . . . , µ
∗
n) must satisfy

C1(λ1)
∂W1

∂µ1

∣∣∣∣
µ1=µ∗1

= C1(λ2)
∂W2

∂µ2

∣∣∣∣
µ2=µ∗2

= · · · = Cn(λn)
∂Wn

∂µn

∣∣∣∣
µn=µ∗n

= ωµ,

where
∂Wj

∂µj

∣∣∣∣
µj=µ∗j

= −(µ∗j −λj)−2, j = 1, . . . , n, and ωµ is the Lagrange multiplier on the
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constraint
∑n

j=1 µj = µ. For j = 1, . . . , n− 1,

Cj(λj)
∂Wj

∂µj

∣∣∣∣
µj=µ∗

j

= Cn(λn)
∂Wn

∂µn

∣∣∣∣
µn=µ∗

n

⇐⇒ Cj(λj)

(µ∗j − λj)2
=

Cn(λn)(
µ−

n−1∑
k=1

µ∗k − λn
)2

⇐⇒ µ∗j = λj +

√
Cj(λj)√
Cn(λn)

(
µ−

n−1∑
k=1

µ∗k − λn

)
.(4.38)

Taking a summation of (4.38) over j, we have

n−1∑
j=1

µ∗j =
n−1∑
j=1

λj +

n−1∑
j=1

√
Cj(λj)√

Cn(λn)

(
µ−

n−1∑
k=1

µ∗k − λn

)
. (4.39)

Note that
n−1∑
j=1

µ∗j and
n−1∑
k=1

µ∗k are the same variable. Thus, from (4.39),

n−1∑
k=1

µ∗k =

√
Cn(λn)

n−1∑
j=1

λj +
n−1∑
j=1

√
Cj(λj) (µ− λn)∑n

j=1

√
Cj(λj)

. (4.40)

At last, substitute (4.40) back to (4.38). Then, we obtain

µ∗j = λj +

√
Cj(λj)∑n

k=1

√
Ck(λk)

(
µ−

n∑
j=k

λk

)
,

after algebraic simplification.

Proof of Proposition 4.4. We will show the result by contradiction. Let Λ∗ be the opti-

mal customer routing decision and suppose that type t customers are served in more than

one periods, i.e., there are at least two entries of the row vector Λ∗t = (Λ∗t1,Λ
∗
t2, . . . ,Λ

∗
tn)

strictly positive. Without loss of generality, let us further assume Λt1,Λt2 > 0. We will

show that S(µ∗,Λ∗) could be improved by routing all type t customers to either period

1 or 2.

Denote Λ∗t1 + Λ∗t2 = Λ̂t and rewrite (4.52) as a function of Λ∗t1

S(µ∗,Λ∗) =

n∑
j=1

vbjΛ
b
j +

n∑
j=1

∑
i6=t

vijΛ
∗
ij +

n∑
j=3

vtjΛ
∗
tj + vt1Λ∗t1 + vt2

(
Λ̂t − Λ∗t1

)
(4.41)

−

√cb1Λb1 + ct1Λ∗t1 +
∑
i 6=t

ci1Λ∗i1 +

√
cb2Λb2 + ct2

(
Λ̂t − Λ∗t1

)
+
∑
i 6=t

ci2Λ∗i2 +
n∑
j=3

√
cbjΛ

b
j +

m∑
i=1

cijΛ∗ij

2

µ−
∑n
j=1 Λbj −

∑m
i=1 Λi

.
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We aim to establish the convexity of S(µ∗,Λ∗) in Λ∗t1. Then, S(µ∗,Λ∗) can be improved

by setting either Λ∗t1 = 0 or Λ̂t. For convenience, define

K1 = cb1Λb
1 +
∑
i 6=t

ci1Λ∗i1, K2 = cb2Λb
2 +ct2Λ̂t+

∑
i 6=t

ci2Λ∗i2, and K3 =
n∑
j=3

√√√√cbjΛ
b
j +

m∑
i=1

cijΛ∗ij.

From (4.41), we see that S(µ∗,Λ) is convex in Λk1 if the numerator of the last term in

(4.41)

f(Λk1) :=
(√

ct1Λ∗t1 +K1 +
√
−ct1Λ∗t1 +K2 +K3

)2

= K1 +K2 +K2
3 + 2K3

(√
ct1Λ∗t1 +K1 +

√
−ct1Λ∗t1 +K2

)
+2
√
ct1Λ∗t1 +K1

√
−ct1Λ∗t1 +K2

is concave in Λ∗t1. Since ct1Λt1 + K1 > 0 and −ct1Λt1 + K2 > 0, it is easy to ver-

ify
√
ct1Λ∗t1 +K1,

√
−ct1Λ∗t1 +K2, and the product

√
ct1Λ∗t1 +K1

√
−ct1Λ∗t1 +K2 are all

concave in Λ∗t1.Therefore, S(µ∗,Λ∗) is convex in Λ∗t1, which indicates ceteris paribus,

S(µ∗,Λ∗) can be improved by choosing Λ∗t1 = 0 or Λ̂t, i.e., pooling type t strategic cus-

tomers who are served in periods 1 or 2 to one of the two periods can improve the social

welfare S(µ∗,Λ∗). This contradicts with the fact that Λ∗ is the optimal customer routing

decision. Therefore, strategic customers of the same type must be routed to exactly one

period at optimality.

Proof of Proposition 4.5. Let us consider the Lagrangian for the FB problem

L(µ,Λ,ω, ωµ,ν,Γ) = S(µ,Λ)+
∑
i

wi

Λi −
n∑
j=1

Λij

+ωµ

µ−∑
j

µj

+
∑
j

νj(µj−λj)+
∑
i,j

γijΛij ,

where ω = (ω1, . . . , ωm), ωµ, ν = (ν1, . . . , νn) ≥ 0, and Γ = (γij) ≥ 0 are Lagrange mul-
tipliers for the corresponding constraints. By the Kuhn-Tucker conditions, the optimal
solution to the FB problem must satisfy

∂L
∂Λij

= vij − cijWj −
(
cbjΛ

b
j +

∑m

t=1
ctjΛtj

) ∂Wj

∂Λij
− ωi − νj + γij = 0, ∀ j = 1, . . . , n and i = 1, . . . ,m(4.42)

∂L
∂µj

= −
(
cbjΛ

b
j +

∑m

t=1
ctjΛtj

) ∂Wj

∂µj
− ωµ + νj = 0, ∀ j = 1, . . . , n (4.43)

νj · (µj − λj) = 0, ∀ j = 1, . . . , n (4.44)

γij · Λij = 0, ∀ j = 1, . . . , n and i = 1, . . . ,m.(4.45)
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Since
∂Wj

∂Λij

= −∂Wj

∂µj
and

∂L
∂µj

= 0 by (4.43), we have

∂L
∂Λij

= vij−cijWj+
(
cbjΛ

b
j +

∑m

t=1
ctjΛtj

) ∂Wj

∂µj
−ωi−νj+γij = vij−cijWj−ωµ−ωi+γij = 0.

From Proposition 4.4, for each type i, only one element of Λi = (Λi1, . . . ,Λin) is strictly

positive and equal to Λi, say, Λik = Λi. Then, Λik′ = 0 for k′ 6= k. Moreover, the

complementarity condition (4.45) implies

γik = 0 and γik′ ≥ 0 for k′ 6= k.

As a result, for type i customers, i = 1, . . . ,m,

∂L
∂Λik

=
∂L
∂Λik′

= 0 ⇐⇒ vik − cikWk − ωµ − ωi = vik′ − cik′Wk′ − ωµ − ωi + γik′

⇐⇒ vik − cikWk ≥ vik′ − cik′Wk′ ,

which demonstrates that it is actually optimal for type i customers to choose period

k than any other period and they have no incentive to deviate from the provider’s FB

solution.

Proof of Proposition 4.6. We first consider the marginal value of serving an additional

amount of type i customers. Assume the total capacity is optimally allocated according

to (4.12) for known arrival rates Λ and Λb. Moreover, by Proposition 4.4, all type i

customers must be served in one time period, say period j∗. Then, expected delay in

every period W ∗
j , j = 1, . . . , n, and period j∗’s unit delay cost Cj∗ are all functions of Λi.

Hence, we rewrite S(µ∗,Λ) in (4.14) as

S(µ∗,Λ) =
n∑
j=1

vbjΛ
b
j +

n∑
j=1

m∑
i=1

vijΛij − Cj∗(Λi)W
∗
j∗(Λi)−

∑
j 6=j∗

CjW
∗
j (Λi),

where W ∗
j (Λj) = Wj(µ

∗
j(Λi) | λj), j = 1, . . . , n, and Cj∗(Λi) = Cj∗(λj∗(Λi)). Since type i

customers are presumably being served in period j∗,

∂S∗

∂Λi

=
∂S∗

∂Λij∗
= vij∗ −

∂Cj∗

∂Λi

W ∗
j∗(Λi)− Cj∗(Λi)

∂W ∗
j∗

∂Λi

−
∑
j 6=j∗

Cj
∂W ∗

j

∂Λi

= vij∗ − cijW ∗
j∗ − Cj∗(Λi)

∂W ∗
j∗

∂Λi

−
∑
j 6=j∗

Cj
∂W ∗

j

∂Λi

, (4.46)
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where S∗ is a shorthand for S(µ∗,Λ). Recall from (4.12),

∂W ∗j∗

∂Λi
=

∂

∂Λi

(
1

µ∗j∗ − λj∗

)
=

∂

∂Λi

(∑n
k=1

√
Ck√

Cj∗(Λi)
· 1

µ−
∑n

k=1 λk

)

=
∂

∂Λi

(∑n
k=1

√
Ck√

Cj∗(Λi)

)
1

µ−
∑n

k=1 λk
+

∑n
k=1

√
Ck√

Cj∗(Λi)

∂

∂Λi

(
1

µ−
∑n

k=1 λk

)

=
∂

∂Λi

(
1√

Cj∗(Λi)

) ∑n
k 6=j∗
√
Ck

µ−
∑n

k=1 λk
+

∑n
k=1

√
Ck√

Cj∗(Λi)

∂

∂Λi

(
1

µ−
∑n

k=1 λk

)
(4.47)

and

∂W ∗j
∂Λi

=
∂

∂Λi

(
1

µ∗j∗ − λj

)
=

∂

∂Λi

(∑n
k=1

√
Ck√

Cj
· 1

µ−
∑n

k=1 λk

)

=
∂

∂Λi

(∑n
k=1

√
Ck√

Cj

)
1

µ−
∑n

k=1 λk
+

∑n
k=1

√
Ck√

Cj

∂

∂Λi

(
1

µ−
∑n

k=1 λk

)

=
1√
Cj

∂

∂Λi

(√
Cj∗(Λi)

)
1

µ−
∑n

k=1 λk
+

∑n
k=1

√
Ck√

Cj

∂

∂Λi

(
1

µ−
∑n

k=1 λk

)
.(4.48)

Substitue (4.47) and (4.48) to (4.46),

∂S∗

∂Λi
= vij∗ − cij∗W ∗j∗ −

∂

∂Λi

(
1√

Cj∗(Λi)

) Cj∗(Λi)
n∑

k 6=j∗

√
Ck

µ−
∑n
k=1 λk

−
√
Cj∗(Λi)

n∑
k=1

√
Ck

∂

∂Λi

(
1

µ−
∑n
k=1 λk

)

−
n∑

j 6=j∗

(
∂

∂Λi

(√
Cj∗(Λi)

) √
Cj

µ−
∑n
k=1 λk

+
√
Cj

n∑
k=1

√
Ck

∂

∂Λi

(
1

µ−
∑n
k=1 λk

))

= vij∗ − cij∗W ∗j∗ −

(
n∑
k=1

√
Ck

)2
∂

∂Λi

(
1

µ−
∑n
k=1 λk

)

−
Cj∗(Λi)

∑n
k 6=j∗

√
Ck

µ−
∑n
k=1 λk

∂

∂Λi

(
1√

Cj∗(Λi)

)
−
∑n
k 6=j∗

√
Ck

µ−
∑n
k=1 λk

∂

∂Λi

(√
Cj∗(Λi)

)

= vij∗ − cij∗W ∗j∗ −

(
n∑
k=1

√
Ck

)2
∂

∂Λi

(
1

µ−
∑n
k=1 λk

)

−
∑n
k 6=j∗

√
Ck

µ−
∑n
k=1 λk

(
Cj∗(Λi)

∂

∂Λi

(
1√

Cj∗(Λi)

)
+

∂

∂Λi

(√
Cj∗(Λi)

))

= vij∗ − cij∗W ∗j∗ −

(
n∑
k=1

√
Ck

)2
∂

∂Λi

(
1

µ−
∑n
k=1 λk

)
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−
∑n
k 6=j∗

√
Ck

µ−
∑n
k=1 λk

(
−Cj

∗(Λi)

Cj∗(Λi)

∂

∂Λi

(√
Cj∗(Λi)

)
+

∂

∂Λi

(√
Cj∗(Λi)

))

= vij∗ − cij∗W ∗j∗ −

(
n∑
k=1

√
Ck

)2
∂

∂Λi

(
1

µ−
∑n
k=1 λk

)
.

= vij∗ − cij∗W ∗j∗ −

(
n∑
k=1

√
Ck

)2(
µ−

n∑
k=1

λk

)−2
. (4.49)

Equation (4.49) shows the marginal value of serving type i customers equals individual

utility from that additional customer minus the externality inflicted on the system. At

the optimal solution, this marginal value must be non-negative, i.e.,

∂S∗

∂Λi

∣∣∣∣
Λi=Λ∗i

= vij∗ − cij∗Wj∗(µ
∗
j∗ | λ∗j∗)−

(
n∑
k=1

√
Ck(λ∗k)

)2(
µ−

n∑
k=1

λ∗k

)−2

≥ 0. (4.50)

In particular, if ∂S∗

∂Λi

∣∣
Λi=Λ∗i

> 0, Λ∗i = Λi.
5 Therefore, if charging a price

p =

(
n∑
k=1

√
Ck(λ∗k)

)2(
µ−

n∑
k=1

λ∗k

)−2

at Λ = Λ∗ and Λb = Λb∗, the provider will serve all type i customers if ∂S∗

∂Λi

∣∣
Λi=Λ∗i

> 0

or only a fraction Λ∗i ≤ Λi if ∂S∗

∂Λi

∣∣
Λi=Λ∗i

= 0. And all served strategic customers receive

non-negative utilities after paying the admission fee p according to (4.50).

Similarly, we can derive the marginal change in social welfare by serving base cus-

tomers of period j,

∂S∗

∂Λb
j

= vbj − cbjW ∗
j −

(
n∑
k=1

√
Ck

)2(
µ−

n∑
k=1

λk

)−2

. (4.51)

The optimal arrival rates can be achieved by the same argument.

Proof of Proposition 4.7. Since Wj(µj | λj) = (µj−λj)−1 is strictly convex in µj > λj

for a fixed λj ≥ 0, the objective function
∑n

j=1 CjWj(µj | λj) +
∑n

j=1 bjµj is jointly

5This result is not as trivial as it seems to be. Since a time period may simultaneously serve multiple
types of strategic customers, it is not clear that the provider would exhaust one type before starting to
serve another. Let us say it is type i that is being served in period j. As the number of type i customers
increases, the marginal value of serving type i customers decreases and may be dominated by that of
another type, since strategic customers have different valuations and delay sensitivities. A rigorous proof
of the result can be accomplished by invoking the Kuhn-Tucker conditions of the CAFRb

fb problem and
considering values of the Lagrange multipliers that corresponds to arrival rates of each type. A detailed
proof is also available from the authors upon request.
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convex in µ > λ. By the first order condition, we have for any j = 1, . . . , n,

Cj(λj)
∂Wj

∂µj
+ bj = − Cj(λj)

(µ∗j − λj)2
+ bj = 0

at optimality. Therefore, µ∗j = λj +
√
Cj(λj)/bj.

Proof of Proposition 4.8.We show, by contradiction, that NS(µ∗,Λ) can be maxi-

mized when only one entry of row Λt = (Λt1, . . . ,Λtn), t = 1, . . . ,m, is nonzero.

Let Λ∗ be the optimal customer routing decision and Suppose that for type t strategic
customers, there are at least two strictly positive entries of row Λ∗t . Without loss of
generality, let us further assume Λ∗t1,Λ

∗
t2 > 0. We will prove that NS(µ∗,Λ∗) could be

improved by routing either all type t flexible customers in period 1 to period 2. Let
Λ̂t := Λ∗t1 + Λ∗t2 and rewrite (4.28) as

NS(µ∗,Λ∗) =

n∑
j=1

vbjΛ
b
j −

n∑
j=1

bjΛ
b
j +

n∑
j=1

∑
i6=t

vijΛ
∗
ij + vt1Λ∗t1 + vt2

(
Λ̂t − Λ∗t1

)
+

n∑
j=3

vtjΛ
∗
tj

−
n∑
j=1

bj∑
i6=t

Λ∗ij

− b1Λ∗t1 − b2
(

Λ̂t − Λ∗t1

)
−

n∑
j=3

bjΛ
∗
tj − 2

n∑
j=3

√√√√bj

(
cbjΛ

b
j +

m∑
i=1

cijΛ∗ij

)

−

√√√√√b1

cb1Λb1 +
∑
i 6=t

ci1Λ∗i1 + ct1Λ∗t1

−
√√√√√b2

cb2Λb2 +
∑
i 6=t

ci2Λ∗i2 + ct2

(
Λ̂t − Λ∗t1

).
Note that all radicands are positive and the last two terms are convex in Λ∗t1. Provided

that all other terms are linear in Λ∗t1, NS(µ∗,Λ∗) is thus convex in Λt1. The maximizer

must reside on the boundary, which implies NS(µ∗,Λ∗) could be improved by routing

all type t strategic customers to either period 1 or period 2. This contradicts with the

fact that Λ∗ is the optimal customer routing decision. Therefore, strategic customers of

the same type must be routed to exactly one period at optimality.

Proof of Proposition 4.9. Let us consider the Lagrangian for the FB problem

L(µ,Λ,ν,Γ) = S(µ,Λ)−
n∑
j=1

bjµj +
∑
i

wi

(
Λi −

n∑
j=1

Λij

)
+
∑
j

νj(µj−λj)+
∑
i,j

γijΛij,

where v = (ν1, . . . , νn) ≥ 0, and Γ = (γij) ≥ 0 are Lagrange multipliers. By the Kuhn-
Tucker conditions, the optimal solution must satisfy

∂L
∂Λij

= vij − cijWj −
(
cbjΛ

b
j +

∑m

t=1
ctjΛtj

) ∂Wj

∂Λij
− ωi − νj + γij = 0, ∀ j = 1, . . . , n and i = 1, . . . ,m

∂L
∂µj

= −
(
cbjΛ

b
j +

∑m

t=1
ctjΛtj

) ∂Wj

∂µj
− bj + νj = 0, ∀ j = 1, . . . , n

νj · (µj − λj) = 0, ∀ j = 1, . . . , n
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γij · Λij = 0, ∀ i, j = 1, . . . , n and i = 1, . . . ,m.

Since
∂Wj

∂Λij
= −∂Wj

∂µj
and ∂L

∂µj
= 0, we have

∂L
∂Λij

= vij−cijWj+
(
cbjΛ

b
j +
∑m

t=1
ctjΛtj

) ∂Wj

∂µj
−ωi−νj+γij = vij−cijWj−kj−ωi+γij = 0.

By Proposition 4.4, for each type i, only one element of Λi = (Λi1, . . . ,Λin) is positive

and must equal to Λi. Let us say it is Λik = Λi. Then, Λik′ = 0 for k′ 6= k. Moreover,

the complementarity of Lagrange multipliers implies

γik = 0 and γik′ ≥ 0 for k′ 6= k.

As a result, for type i customers,

∂L
∂Λik

=
∂L
∂Λik′

= 0 ⇐⇒ vik − cikWk − bk − ωi = vik′ − cik′Wk′ − bk′ − ωi + γik′

⇐⇒ vik − cikWk − bk ≥ vik′ − cik′Wk′ − bk′ ,

which verifies type i customers have no incentive to deviate to other period at the FB

solution.

Proof of Proposition 4.10. For any given arrival rate matrix Λ, assume the total

capacity is optimally allocated according to (4.26). The net value of system welfare and

capacity cost can be expressed as

NS(µ∗,Λ) = S(µ∗,Λ)−
n∑
j=1

bjµ
∗
j =

n∑
j=1

vbjΛ
b
j +

n∑
j=1

m∑
i=1

vijΛij −
n∑
j=1

CjW
∗
j −

n∑
j=1

bjµ
∗
j ,

which is only a function Λ, since µ∗ is specified as (4.26). By Proposition 4.8, all type i

customers are served in one time period, say period j∗. Then, we rewrite NS(µ∗,Λ) as

NS∗ := NS(µ∗,Λ) =

n∑
j=1

vbjΛ
b
j +

n∑
j=1

m∑
i=1

vijΛij − Cj∗W ∗j∗ −
∑
j 6=j∗

CjW
∗
j − bj∗µ∗j∗ −

n∑
j 6=j∗

bjµ
∗
j

Note that Cj∗ , W
∗
j∗ and µ∗j∗ are all functions of Λi. Thus, the marginal change in net

system welfare by serving type i in period j∗ is

∂NS∗

∂Λij∗
= vij∗ −

∂Cj∗

∂Λij∗
W ∗j∗ − Cj∗

∂W ∗j∗

∂Λij∗
− bj∗

∂µ∗j∗

∂Λij∗

= vij∗ −
∂Cj∗

∂Λij∗
W ∗j∗ − Cj∗

∂

∂Λij∗

(√
bj∗/Cj∗

)
− bj∗

∂

∂Λij∗

(
λj∗ +

√
Cj∗/bj∗

)
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= vij∗ −
∂Cj∗

∂Λij∗
W ∗j∗ − Cj∗

∂

∂Λij∗

(√
bj∗/Cj∗

)
− bj∗

∂λj∗

∂Λij∗
+ bj∗

Cj∗

bj∗
· ∂

∂Λij∗

(√
bj∗/Cj∗

)
= vij∗ − cij∗W ∗j∗ − bj∗ ,

where the second last equation results from

∂

∂Λij∗

(√
Cj∗/bj∗

)
=

∂

∂Λij∗

(
1
/√

bj∗/Cj∗

)
= −Cj

∗

bj∗
· ∂

∂Λij∗

(√
bj∗/Cj∗

)
.

At the optimal solution, the marginal value of serving type i customers must be non-

negative, i.e.,
∂NS∗

∂Λij∗

∣∣∣∣
Λij∗=Λ∗i

= vij∗ − cij∗W ∗
j∗ − bj∗ ≥ 0. (4.52)

In particular, if ∂NS∗

∂Λij∗

∣∣
Λij∗=Λ∗i

> 0, Λ∗i = Λi. Therefore, if charging a price p = bj∗ at

Λ = Λ∗ and Λb = Λb∗, the provider will serve all type i customers if ∂NS∗

∂Λij∗

∣∣
Λij∗=Λ∗i

> 0 or

only a fraction Λ∗i ≤ Λi if ∂NS∗

∂Λij∗

∣∣
Λij∗=Λ∗i

= 0. And all served strategic customers receive

non-negative utilities after paying the admission fee p according to (4.52). Since pj = bj,

the incentive compatibility attains.

We can apply similar arguments to base customers and obtain the same results.
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